Tu Gong-Han, Guo Xu-Dong, Xi Shao-Yang, Ma Xiao-Hui, Jin Ling
College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China.
Front Plant Sci. 2025 Aug 4;16:1635595. doi: 10.3389/fpls.2025.1635595. eCollection 2025.
Understanding the impacts of climate change and land use dynamics on parasitic plants is crucial for ecological restoration and sustainable resource management in arid regions. This study proposes a two-dimensional modeling framework that integrates parasitic constraints and land use dynamics to predict the potential suitable habitat of , a medicinal plant obligately parasitic on Haloxylon ammodendron.
Using an optimized MaxEnt model, host suitability probability was incorporated as a continuous probabilistic constraint, and high-resolution land use data were coupled to enhance ecological realism. The framework was applied to assess habitat suitability under current (1970-2000) and future climate scenarios (2050s, 2070s, 2090s, SSP126, SSP370, SSP585).
The inclusion of parasitic constraints reduced the suitable habitat area by 4.5% (from 138.20 × 104 km² to 131.92 × 104 km²) and exacerbated habitat fragmentation, particularly in Northwest China. Future projections reveal a decrease in the total suitable habitat area but an increase in the area of highly suitable regions, with the centroid shifting towards the northwest. Land use analysis demonstrated that unused land (70.21%) and grassland (13.81%) constitute the primary habitats, highlighting their significance for sustainable cultivation. Key environmental drivers identified include July precipitation, soil pH, and temperature of the warmest quarter. The model exhibited high predictive accuracy (AUC: 0.947-0.949).
The framework provides a reliable tool for assessing host-parasite interactions and land use impacts. These findings offer valuable insights for adaptive management strategies that balance ecological restoration and the sustainability of medicinal resources in arid ecosystems.
了解气候变化和土地利用动态对寄生植物的影响,对于干旱地区的生态恢复和可持续资源管理至关重要。本研究提出了一个二维建模框架,该框架整合了寄生限制和土地利用动态,以预测一种专性寄生于梭梭上的药用植物的潜在适宜栖息地。
使用优化的最大熵模型,将寄主适宜性概率作为连续概率约束纳入,并结合高分辨率土地利用数据以增强生态现实性。该框架被应用于评估当前(1970 - 2000年)和未来气候情景(2050年代、2070年代、2090年代、SSP126、SSP370、SSP585)下的栖息地适宜性。
纳入寄生限制使适宜栖息地面积减少了4.5%(从138.20×10⁴平方千米降至131.92×10⁴平方千米),并加剧了栖息地破碎化,特别是在中国西北部。未来预测显示,适宜栖息地总面积减少,但高度适宜区域的面积增加,重心向西北转移。土地利用分析表明,未利用土地(70.21%)和草地(13.81%)构成主要栖息地,突出了它们对可持续种植的重要性。确定的关键环境驱动因素包括7月降水量、土壤pH值和最暖季度温度。该模型表现出较高的预测准确性(AUC:0.947 - 0.949)。
该框架为评估寄主 - 寄生虫相互作用和土地利用影响提供了一个可靠的工具。这些发现为平衡干旱生态系统中的生态恢复和药用资源可持续性的适应性管理策略提供了有价值的见解。