Suppr超能文献

使用带有均值教师框架的双解码器相互学习进行医学图像分割

Medical image segmentation using dual-decoder mutual teaching with a mean teacher framework.

作者信息

Zhang Juan, Jiang Gaoqiang, Li Zhongwen, Tian Bihan, Yu Shuchen, Yu Qingxiang, Zhou Jie, Chen Hao, Pu Jiantao, Yi Quanyong, Wang Lei

机构信息

National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.

State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.

出版信息

Pattern Recognit. 2026 Mar;171(Pt A). doi: 10.1016/j.patcog.2025.112184. Epub 2025 Jul 21.

Abstract

Accurate segmentation of medical images is essential for many clinical applications and is now typically achieved by training deep learning models on large annotated datasets. However, acquiring sufficient labeled images remains challenging, as pixel-level manual annotations are highly time-consuming. To substantially reduce the manual effort, we developed a novel semi-supervised segmentation method, termed dual-decoder mutual teaching (DDMT), which incorporates a smoothed exponential moving average (sEMA) scheme and a shape consistency constraint (SCC) scheme into the classical mean teacher (MT) framework. The sEMA scheme enhances the stability of the student and teacher models during training, while the SCC scheme ensures consistent learning of shape characteristics across the two different decoders within each model. With these two innovative components, DDMT achieves promising segmentation performance when trained on limited labeled images and abundant unlabeled images. Experiments on public datasets for left atrium, pancreas, and optic disc segmentation demonstrated that DDMT consistently outperforms several state-of-the-art semi-supervised learning (SSL) methods (e.g., MT, UAMT, DTC, and MCNet) across varying proportions of labeled images. The source code is publicly available at https://github.com/wmuLei/ddmt.

摘要

医学图像的精确分割对于许多临床应用至关重要,目前通常通过在大型带注释数据集上训练深度学习模型来实现。然而,获取足够的标记图像仍然具有挑战性,因为像素级手动注释非常耗时。为了大幅减少人工工作量,我们开发了一种新颖的半监督分割方法,称为双解码器相互教学(DDMT),该方法将平滑指数移动平均(sEMA)方案和形状一致性约束(SCC)方案纳入经典的均值教师(MT)框架。sEMA方案在训练期间增强了学生模型和教师模型的稳定性,而SCC方案确保每个模型内两个不同解码器对形状特征的一致学习。通过这两个创新组件,DDMT在有限的标记图像和大量未标记图像上进行训练时,实现了有前景的分割性能。在用于左心房、胰腺和视盘分割的公共数据集上进行的实验表明,在不同比例的标记图像上,DDMT始终优于几种先进的半监督学习(SSL)方法(例如MT、UAMT、DTC和MCNet)。源代码可在https://github.com/wmuLei/ddmt上公开获取。

相似文献

1
Medical image segmentation using dual-decoder mutual teaching with a mean teacher framework.
Pattern Recognit. 2026 Mar;171(Pt A). doi: 10.1016/j.patcog.2025.112184. Epub 2025 Jul 21.
6
Semi-supervised semantic segmentation of cell nuclei with diffusion model and collaborative learning.
J Med Imaging (Bellingham). 2025 Nov;12(6):061403. doi: 10.1117/1.JMI.12.6.061403. Epub 2025 Mar 20.
7
DSMT-Net: Dual-student mean teacher network with pixel-level pseudo-label optimization for semi-supervised medical image segmentation.
Comput Biol Chem. 2025 Dec;119:108579. doi: 10.1016/j.compbiolchem.2025.108579. Epub 2025 Jul 9.
9
Semi-Supervised Learning Allows for Improved Segmentation With Reduced Annotations of Brain Metastases Using Multicenter MRI Data.
J Magn Reson Imaging. 2025 Jun;61(6):2469-2479. doi: 10.1002/jmri.29686. Epub 2025 Jan 10.
10
Segment Together: A Versatile Paradigm for Semi-Supervised Medical Image Segmentation.
IEEE Trans Med Imaging. 2025 Jul;44(7):2948-2959. doi: 10.1109/TMI.2025.3556310.

本文引用的文献

1
Bidirectional Copy-Paste Mamba for Enhanced Semi-Supervised Segmentation of Transvaginal Uterine Ultrasound Images.
Diagnostics (Basel). 2024 Jul 3;14(13):1423. doi: 10.3390/diagnostics14131423.
2
Semi-supervised medical image segmentation via uncertainty rectified pyramid consistency.
Med Image Anal. 2022 Aug;80:102517. doi: 10.1016/j.media.2022.102517. Epub 2022 Jun 15.
3
Inconsistency-Aware Uncertainty Estimation for Semi-Supervised Medical Image Segmentation.
IEEE Trans Med Imaging. 2022 Mar;41(3):608-620. doi: 10.1109/TMI.2021.3117888. Epub 2022 Mar 2.
4
A coarse-to-fine deep learning framework for optic disc segmentation in fundus images.
Biomed Signal Process Control. 2019 May;51:82-89. doi: 10.1016/j.bspc.2019.01.022. Epub 2019 Feb 22.
5
Image Segmentation Using Deep Learning: A Survey.
IEEE Trans Pattern Anal Mach Intell. 2022 Jul;44(7):3523-3542. doi: 10.1109/TPAMI.2021.3059968. Epub 2022 Jun 3.
7
A global benchmark of algorithms for segmenting the left atrium from late gadolinium-enhanced cardiac magnetic resonance imaging.
Med Image Anal. 2021 Jan;67:101832. doi: 10.1016/j.media.2020.101832. Epub 2020 Oct 16.
8
Abdominal multi-organ segmentation with organ-attention networks and statistical fusion.
Med Image Anal. 2019 Jul;55:88-102. doi: 10.1016/j.media.2019.04.005. Epub 2019 Apr 18.
9
Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool.
BMC Med Imaging. 2015 Aug 12;15:29. doi: 10.1186/s12880-015-0068-x.
10
Deep learning in neural networks: an overview.
Neural Netw. 2015 Jan;61:85-117. doi: 10.1016/j.neunet.2014.09.003. Epub 2014 Oct 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验