Roston Rachel A, Tustison Nicholas J, Maga A Murat
Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA.
Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia.
bioRxiv. 2025 Aug 12:2025.08.11.669599. doi: 10.1101/2025.08.11.669599.
Image registration-based volumetric morphometrics have emerged as a valuable method for identifying subtle morphological differences in neuroimaging and other biomedical images. However, accurate registration out-of-the-box remains challenging when overt morphological phenotypes-such as those observed in developmental and comparative studies-are present in a dataset. A new label-informed image registration function developed in the ANTsX ecosystem provides an easy to use, generalizable solution for anatomy-aware registration of a wide diversity of morphological variation. In this approach, segmentations (, labels) provide regional correspondences that guide the registration. These labels can be generated by any method-manually, using semi-automated tools, or through deep learning-based approaches-and allow morphological experts to define regions of correspondence based on biological concepts of homology (, tissue origin, gene expression patterns). Here we demonstrate the utility of this label-informed image registration approach for improving the registration knockout mouse embryos which fail to register to a wildtype (normative) template image by traditional registration methods. E15.5 mouse embryos show a severe scoliosis and radical topological rearrangement of the internal organs. Compared to traditional, intensity-only registration, the new label-informed image registration improved the correspondence of knockout subjects to the canonical template image, which resulted in increased power and sensitivity of downstream statistical analyses. All in all, label-informed image registration provides a flexible and customizable method to allow image registration in datasets for which registration-based morphometrics were previously unfeasible, unlocking new potential applications of registration-based morphometrics in developmental, comparative, and evolutionary studies.
基于图像配准的体积形态计量学已成为一种有价值的方法,用于识别神经影像学和其他生物医学图像中的细微形态差异。然而,当数据集中存在明显的形态表型(如在发育和比较研究中观察到的那些)时,开箱即用的精确配准仍然具有挑战性。在ANTsX生态系统中开发的一种新的标签引导图像配准函数为各种形态变异的解剖学感知配准提供了一种易于使用、可推广的解决方案。在这种方法中,分割(即标签)提供了指导配准的区域对应关系。这些标签可以通过任何方法生成——手动、使用半自动工具或通过基于深度学习的方法——并允许形态学专家根据同源性的生物学概念(即组织起源、基因表达模式)定义对应区域。在这里,我们展示了这种标签引导图像配准方法在改进对通过传统配准方法无法与野生型(标准)模板图像配准的基因敲除小鼠胚胎进行配准方面的效用。E15.5期小鼠胚胎表现出严重的脊柱侧弯和内脏的剧烈拓扑重排。与传统的仅基于强度的配准相比,新的标签引导图像配准提高了基因敲除对象与标准模板图像的对应性,这导致了下游统计分析的功效和敏感性增加。总而言之,标签引导图像配准提供了一种灵活且可定制的方法,以允许在以前基于配准的形态计量学不可行的数据集中进行图像配准,从而开启了基于配准的形态计量学在发育、比较和进化研究中的新潜在应用。