Suppr超能文献

SlicerMorph:一个用于检索、可视化和分析三维形态的开放且可扩展的平台。

SlicerMorph: An open and extensible platform to retrieve, visualize and analyze 3D morphology.

作者信息

Rolfe Sara, Pieper Steve, Porto Arthur, Diamond Kelly, Winchester Julie, Shan Shan, Kirveslahti Henry, Boyer Doug, Summers Adam, Maga A Murat

机构信息

University of Washington, Friday Harbor Marine Laboratories, San Juan, WA.

Seattle Children's Research Institute, Center for Developmental Biology and Regenerative Medicine, Seattle, WA.

出版信息

Methods Ecol Evol. 2021 Oct;12(10):1816-1825. doi: 10.1111/2041-210x.13669. Epub 2021 Jul 14.

Abstract
  1. Large scale digitization projects such as and are generating high-resolution microCT scans of vertebrates by the thousands. Data from these projects are shared with the community using aggregate 3D specimen repositories like MorphoSource through various open licenses. We anticipate an explosion of quantitative research in organismal biology with the convergence of available data and the methodologies to analyze them. 2. Though the data are available, the road from a series of images to analysis is fraught with challenges for most biologists. It involves tedious tasks of data format conversions, preserving spatial scale of the data accurately, 3D visualization and segmentations, acquiring measurements and annotations. When scientists use commercial software with proprietary formats, a roadblock for data exchange, collaboration, and reproducibility is erected that hurts the efforts of the scientific community to broaden participation in research. 3. We developed SlicerMorph as an extension of 3D Slicer, a biomedical visualization and analysis ecosystem with extensive visualization and segmentation capabilities built on proven python-scriptable open-source libraries such as Visualization Toolkit and Insight Toolkit. In addition to the core functionalities of Slicer, SlicerMorph provides users with modules to conveniently retrieve open-access 3D models or import users own 3D volumes, to annotate 3D curve and patch-based landmarks, generate landmark templates, conduct geometric morphometric analyses of 3D organismal form using both landmark-driven and landmark-free approaches, and create 3D animations from their results. We highlight how these individual modules can be tied together to establish complete workflow(s) from image sequence to morphospace. Our software development efforts were supplemented with short courses and workshops that cover the fundamentals of 3D imaging and morphometric analyses as it applies to study of organismal form and shape in evolutionary biology. 4. Our goal is to establish a community of organismal biologists centered around Slicer and SlicerMorph to facilitate easy exchange of data and results and collaborations using 3D specimens. Our proposition to our colleagues is that using a common open platform supported by a large user and developer community ensures the longevity and sustainability of the tools beyond the initial development effort.
摘要
  1. 诸如[具体项目1]和[具体项目2]之类的大规模数字化项目正在生成数以千计的脊椎动物高分辨率显微CT扫描数据。这些项目的数据通过诸如MorphoSource之类的聚合3D标本库,以各种开放许可与科学界共享。我们预计,随着可用数据与分析方法的融合,有机生物学领域的定量研究将迎来爆发式增长。2. 尽管数据已可获取,但对于大多数生物学家而言,从一系列图像到分析的过程充满挑战。这涉及数据格式转换的繁琐任务、准确保持数据的空间尺度、3D可视化与分割、获取测量值和注释。当科学家使用具有专有格式的商业软件时,就会竖起一道数据交换、协作和可重复性的障碍,这损害了科学界扩大研究参与度的努力。3. 我们开发了SlicerMorph作为3D Slicer的扩展,3D Slicer是一个生物医学可视化和分析生态系统,它基于诸如可视化工具包(Visualization Toolkit)和洞察工具包(Insight Toolkit)等经过验证的可通过Python脚本编写的开源库,具有广泛的可视化和分割功能。除了Slicer的核心功能外,SlicerMorph还为用户提供模块,以便方便地检索开放获取的3D模型或导入用户自己的3D体积数据,注释3D曲线和基于面片的地标,生成地标模板,使用基于地标的方法和无地标方法对3D生物体形态进行几何形态计量分析,并根据结果创建3D动画。我们强调了如何将这些单个模块结合在一起,以建立从图像序列到形态空间的完整工作流程。我们的软件开发工作还辅以短期课程和研讨会,内容涵盖适用于进化生物学中生物体形态和形状研究的3D成像和形态计量分析基础知识。4. 我们的目标是围绕Slicer和SlicerMorph建立一个有机生物学家社区,以促进使用3D标本轻松交换数据和结果以及开展合作。我们向同事们提出的建议是,使用一个由大量用户和开发者社区支持的通用开放平台,可确保工具在初始开发工作之后的长期使用和可持续性。

相似文献

1
SlicerMorph: An open and extensible platform to retrieve, visualize and analyze 3D morphology.
Methods Ecol Evol. 2021 Oct;12(10):1816-1825. doi: 10.1111/2041-210x.13669. Epub 2021 Jul 14.
2
ALPACA: A fast and accurate computer vision approach for automated landmarking of three-dimensional biological structures.
Methods Ecol Evol. 2021 Nov;12(11):2129-2144. doi: 10.1111/2041-210X.13689. Epub 2021 Aug 9.
3
SlicerRT: radiation therapy research toolkit for 3D Slicer.
Med Phys. 2012 Oct;39(10):6332-8. doi: 10.1118/1.4754659.
4
3D Slicer as an image computing platform for the Quantitative Imaging Network.
Magn Reson Imaging. 2012 Nov;30(9):1323-41. doi: 10.1016/j.mri.2012.05.001. Epub 2012 Jul 6.
5
Polymorph segmentation representation for medical image computing.
Comput Methods Programs Biomed. 2019 Apr;171:19-26. doi: 10.1016/j.cmpb.2019.02.011. Epub 2019 Feb 21.
6
Visualization of protein interaction networks: problems and solutions.
BMC Bioinformatics. 2013;14 Suppl 1(Suppl 1):S1. doi: 10.1186/1471-2105-14-S1-S1. Epub 2013 Jan 14.
7
An Open-Source Photogrammetry Workflow for Reconstructing 3D Models.
Integr Org Biol. 2023 Jul 7;5(1):obad024. doi: 10.1093/iob/obad024. eCollection 2023.
10
Analyzing microtomography data with Python and the scikit-image library.
Adv Struct Chem Imaging. 2017;2(1):18. doi: 10.1186/s40679-016-0031-0. Epub 2016 Dec 7.

引用本文的文献

1
Genomic and Morphological Evidence Support Contemporary Three-Way Interspecific Hybridization in Ranid Frogs.
Ecol Evol. 2025 Aug 31;15(9):e72035. doi: 10.1002/ece3.72035. eCollection 2025 Sep.
3
Mechanical function of the unique alveolar torus in the sabretooth (Nimravidae, Carnivora).
Biol Lett. 2025 Aug;21(8):20250208. doi: 10.1098/rsbl.2025.0208. Epub 2025 Aug 27.
4
Anatomy-aware, label-informed approach improves image registration for challenging datasets.
bioRxiv. 2025 Aug 12:2025.08.11.669599. doi: 10.1101/2025.08.11.669599.
5
Evolutionary morphology of genital spines informed by puncture mechanics.
Proc Biol Sci. 2025 Aug;292(2053):20251698. doi: 10.1098/rspb.2025.1698. Epub 2025 Aug 20.
6
SlicerMorph photogrammetry: an open-source photogrammetry workflow for reconstructing 3D models.
Biol Open. 2025 Aug 15;14(8). doi: 10.1242/bio.062126. Epub 2025 Aug 29.
8
Variation and disparity within the inner ear and trigeminus of the tenrecomorpha.
Commun Biol. 2025 Jul 23;8(1):1090. doi: 10.1038/s42003-025-08489-8.
9
Engineering the battle: Design-specific analysis of stag beetle mandibles for combat efficiency.
PNAS Nexus. 2025 Jun 20;4(7):pgaf205. doi: 10.1093/pnasnexus/pgaf205. eCollection 2025 Jul.
10
Exploring desert-adapted beetles with 3D geometric morphometrics.
Sci Rep. 2025 Jul 2;15(1):22824. doi: 10.1038/s41598-025-05967-1.

本文引用的文献

1
ALPACA: A fast and accurate computer vision approach for automated landmarking of three-dimensional biological structures.
Methods Ecol Evol. 2021 Nov;12(11):2129-2144. doi: 10.1111/2041-210X.13689. Epub 2021 Aug 9.
2
Comparing semi-landmarking approaches for analyzing three-dimensional cranial morphology.
Am J Phys Anthropol. 2021 May;175(1):227-237. doi: 10.1002/ajpa.24214. Epub 2021 Jan 23.
3
Ecomorphological diversification in squamates from conserved pattern of cranial integration.
Proc Natl Acad Sci U S A. 2019 Jul 16;116(29):14688-14697. doi: 10.1073/pnas.1820967116. Epub 2019 Jul 1.
4
Evaluating causes of error in landmark-based data collection using scanners.
PLoS One. 2017 Nov 3;12(11):e0187452. doi: 10.1371/journal.pone.0187452. eCollection 2017.
6
The inside story on 20,000 vertebrates.
Science. 2017 Aug 25;357(6353):742-743. doi: 10.1126/science.357.6353.742. Epub 2017 Aug 24.
8
A population level atlas of Mus musculus craniofacial skeleton and automated image-based shape analysis.
J Anat. 2017 Sep;231(3):433-443. doi: 10.1111/joa.12645. Epub 2017 Jun 28.
9
Error in geometric morphometric data collection: Combining data from multiple sources.
Am J Phys Anthropol. 2017 Sep;164(1):62-75. doi: 10.1002/ajpa.23257. Epub 2017 Jun 2.
10
High-throughput discovery of novel developmental phenotypes.
Nature. 2016 Sep 22;537(7621):508-514. doi: 10.1038/nature19356. Epub 2016 Sep 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验