Chilaparasetti Atchuth Naveen, Thai Andy, Gao Pan, Xu Xiangmin, Gopi M
Department of Computer Science, University of California, Irvine, Irvine, CA 92617, USA.
Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA 92617, USA.
Neuroimage. 2025 Jan;305:120981. doi: 10.1016/j.neuroimage.2024.120981. Epub 2024 Dec 26.
We show in this work that incorporating geometric features and geometry processing algorithms for mouse brain image registration broadens the applicability of registration algorithms and improves the registration accuracy of existing methods. We introduce the preprocessing and postprocessing steps in our proposed framework as RegBoost. We develop a method to align the axis of 3D image stacks by detecting the central planes that pass symmetrically through the image volumes. We then find geometric contours by defining external and internal structures to facilitate image correspondences. We establish Dirichlet boundary conditions at these correspondences and find the displacement map throughout the volume using Laplacian interpolation. We discuss the challenges in our standalone framework and demonstrate how our new approaches can improve the results of existing image registration methods. We expect our new approach and algorithms will have critical applications in brain mapping projects.
我们在这项工作中表明,将几何特征和几何处理算法纳入小鼠脑图像配准可拓宽配准算法的适用性,并提高现有方法的配准精度。我们在我们提出的框架RegBoost中引入了预处理和后处理步骤。我们开发了一种方法,通过检测对称穿过图像体积的中心平面来对齐三维图像堆栈的轴。然后,我们通过定义外部和内部结构来找到几何轮廓,以促进图像对应。我们在这些对应处建立狄利克雷边界条件,并使用拉普拉斯插值在整个体积中找到位移映射。我们讨论了我们独立框架中的挑战,并展示了我们的新方法如何能够改善现有图像配准方法的结果。我们期望我们的新方法和算法将在脑图谱项目中具有关键应用。