Suppr超能文献

通过多个模板进行自动地标定位。

Automated landmarking via multiple templates.

机构信息

Center for Development Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, United States of America.

Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America.

出版信息

PLoS One. 2022 Dec 1;17(12):e0278035. doi: 10.1371/journal.pone.0278035. eCollection 2022.

Abstract

Manually collecting landmarks for quantifying complex morphological phenotypes can be laborious and subject to intra and interobserver errors. However, most automated landmarking methods for efficiency and consistency fall short of landmarking highly variable samples due to the bias introduced by the use of a single template. We introduce a fast and open source automated landmarking pipeline (MALPACA) that utilizes multiple templates for accommodating large-scale variations. We also introduce a K-means method of choosing the templates that can be used in conjunction with MALPACA, when no prior information for selecting templates is available. Our results confirm that MALPACA significantly outperforms single-template methods in landmarking both single and multi-species samples. K-means based template selection can also avoid choosing the worst set of templates when compared to random template selection. We further offer an example of post-hoc quality check for each individual template for further refinement. In summary, MALPACA is an efficient and reproducible method that can accommodate large morphological variability, such as those commonly found in evolutionary studies. To support the research community, we have developed open-source and user-friendly software tools for performing K-means multi-templates selection and MALPACA.

摘要

手动收集地标来量化复杂的形态表型可能既繁琐又容易出现观察者内和观察者间的误差。然而,由于使用单个模板会引入偏差,大多数用于提高效率和一致性的自动化地标方法都无法地标高度可变的样本。我们引入了一种快速的开源自动化地标流水线(MALPACA),该流水线利用多个模板来适应大规模变化。当没有用于选择模板的先验信息时,我们还引入了一种 K-means 模板选择方法,可以与 MALPACA 结合使用。我们的结果证实,MALPACA 在地标单个和多物种样本方面的表现明显优于单模板方法。与随机模板选择相比,基于 K-means 的模板选择还可以避免选择最差的模板集。我们进一步提供了每个单独模板的事后质量检查示例,以进一步改进。总之,MALPACA 是一种高效且可重复的方法,可以适应大的形态变异性,例如在进化研究中常见的变异性。为了支持研究社区,我们开发了开源且用户友好的软件工具,用于执行 K-means 多模板选择和 MALPACA。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d02c/9714854/19d853f2fe0f/pone.0278035.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验