Suppr超能文献

DB-SNet:一种用于主动脉成分分割和病变定位的双分支网络。

DB-SNet: A dual branch network for aortic component segmentation and lesion localization.

作者信息

Yang Mingliang, Lyu Jinhao, Hu Jianxing, Bian Xiangbing, Zhang Yue, Su Sulian, Lou Xin

机构信息

School of Medical Technology, Beijing Institute of Technology, No.5 Zhongguancun South Street, Haidian District, Beijing 100081, China.

Department of Radiology, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China.

出版信息

Comput Med Imaging Graph. 2025 Sep;124:102592. doi: 10.1016/j.compmedimag.2025.102592. Epub 2025 Aug 14.

Abstract

Accurate segmentation of aortic components, such as lumen, calcification, and false lumen, and associated lesions, including aneurysm, stenosis, and dissection in CT angiography (CTA) scans is crucial for cardiovascular diagnosis and treatment planning. However, most existing automated methods generate binary masks with limited clinical utility and rely on separate computational pipelines for anatomical and lesion segmentation, resulting in higher resource demands. To address these limitations, we propose DB-SNet, a dual-branch 3D segmentation network based on the MedNeXt architecture. The model incorporates a shared encoder and task-specific decoders, enhanced by a novel channel-space cross-fusion module that facilitates effective feature interaction between the two branches. A systematic ablation study was conducted to assess the impact of different backbone architectures, information interaction strategies, and loss weight configurations on dual-task performance. Evaluated on 435 multi-center CTA cases for training and 493 external cases for validation, DB-SNet outperformed 15 state-of-the-art models, achieving the highest average scores on the Dice Similarity Coefficient (DSC: 0.615) and Intersection over Union (IoU: 0.524) metrics. Compared to the current best-performing method (MedNeXt), DB-SNet reduced model parameters by 64.8 % and computational complexity by 36.4 %, while achieving a 30.801 × inference speedup (37.985 s vs. 1170 s for manual annotation). This work introduces a new paradigm for efficient and integrated aortic analysis. By balancing model efficiency and accuracy, DB-SNet offers a robust solution for real-time, resource-constrained clinical environments. Our dataset and code can be accessed at https://github.com/yml-bit/DB-SNet.

摘要

在CT血管造影(CTA)扫描中,准确分割主动脉各部分,如管腔、钙化和假腔,以及相关病变,包括动脉瘤、狭窄和夹层,对于心血管诊断和治疗规划至关重要。然而,大多数现有的自动化方法生成的二元掩码临床效用有限,并且依赖于单独的计算管道进行解剖结构和病变分割,导致资源需求更高。为了解决这些限制,我们提出了DB-SNet,一种基于MedNeXt架构的双分支3D分割网络。该模型包含一个共享编码器和特定任务解码器,并通过一个新颖的通道-空间交叉融合模块进行增强,该模块促进了两个分支之间的有效特征交互。进行了系统的消融研究,以评估不同主干架构、信息交互策略和损失权重配置对双任务性能的影响。在435例多中心CTA病例上进行训练,并在493例外部病例上进行验证,DB-SNet优于15种先进模型,在骰子相似系数(DSC:0.615)和交并比(IoU:0.524)指标上获得了最高平均分数。与当前性能最佳的方法(MedNeXt)相比,DB-SNet将模型参数减少了64.8%,计算复杂度降低了36.4%,同时推理速度提高了30.801倍(手动标注为1170秒,而DB-SNet为37.985秒)。这项工作引入了一种高效集成主动脉分析的新范式。通过平衡模型效率和准确性,DB-SNet为实时、资源受限的临床环境提供了一个强大的解决方案。我们的数据集和代码可在https://github.com/yml-bit/DB-SNet上获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验