Zhuang Changjin, Wu Yanan, Qi Qianqian, Zhao Shuiqing, Sun Yu, Hou Jie, Qian Wei, Yang Benqiang, Qi Shouliang
College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.
Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China.
Cardiovasc Eng Technol. 2025 Jun 6. doi: 10.1007/s13239-025-00787-w.
Aortic dissection (AD) is a rare condition with a high mortality rate, necessitating accurate and rapid diagnosis. This study develops an automated deep learning pipeline for identifying, segmenting, and Stanford subtyping AD using computed tomography angiography (CTA) images.
This pipeline consists of four interconnected modules: aorta segmentation, AD identification, true lumen (TL) and false lumen (FL) segmentation, and Stanford subtyping. In the aorta segmentation module, a 3D full-resolution nnU-Net is trained. The segmented aorta's boundary is extracted using morphological operations and projected from multiple views in the AD identification module. AD identification is then performed using the multi-view projection data. For AD cases, a 3D nnU-Net is further trained for TL/FL segmentation based on the segmented aorta. Finally, a network is trained for Stanford subtyping using multi-view maximum density projections of the segmented TL/FL. A total of 386 CTA scans were collected for training, validation, and testing of the pipeline.
For AD identification, the method achieved an accuracy of 0.979. The TL/FL segmentation for TypeA-AD and Type-B-AD achieved average Dice coefficient of 0.968 for TL and 0.971 for FL. For Stanford subtyping, the multi-view method achieved an accuracy of 0.990.
The automated pipeline enables rapid and accurate identification, segmentation, and Stanford subtyping of AD using CTA images, potentially accelerating the diagnosis and treatment. The segmented aorta and TL/FL can also serve as references for physicians. The code, models, and pipeline are publicly available at https://github.com/zhuangCJ/A-pipeline-of-AD.git .
主动脉夹层(AD)是一种死亡率很高的罕见疾病,需要准确快速的诊断。本研究开发了一种自动化深度学习流程,用于使用计算机断层血管造影(CTA)图像识别、分割主动脉夹层并进行斯坦福分型。
该流程由四个相互连接的模块组成:主动脉分割、AD识别、真腔(TL)和假腔(FL)分割以及斯坦福分型。在主动脉分割模块中,训练一个3D全分辨率nnU-Net。在AD识别模块中,使用形态学操作提取分割后的主动脉边界,并从多个视图进行投影。然后使用多视图投影数据进行AD识别。对于AD病例,基于分割后的主动脉进一步训练一个3D nnU-Net用于TL/FL分割。最后,使用分割后的TL/FL的多视图最大密度投影训练一个网络用于斯坦福分型。总共收集了386例CTA扫描用于该流程的训练、验证和测试。
对于AD识别,该方法的准确率达到0.979。A型AD和B型AD的TL/FL分割中,TL的平均Dice系数为0.968,FL的平均Dice系数为0.971。对于斯坦福分型,多视图方法的准确率达到0.990。
该自动化流程能够使用CTA图像快速准确地识别、分割主动脉夹层并进行斯坦福分型,可能会加速诊断和治疗。分割后的主动脉以及TL/FL也可为医生提供参考。代码、模型和流程可在https://github.com/zhuangCJ/A-pipeline-of-AD.git上公开获取。