Suppr超能文献

具有广泛生物活性的亚芳基和喹喔啉纤维素衍生物的表征及分子动力学模拟

Characterizations and molecular dynamic simulations of broad biologically active arylidene and Quinoxaline cellulose derivatives.

作者信息

Hasanin Mohamed S, El-Rashedy Ahmed A, El-Ziaty Ahmed K, Abbass Eslam M, Kamel Samir

机构信息

Cellulose & Paper Department, National Research Centre, 33 El-Bohouth St. (Former El-Tahrir St.), Dokki, P.O. 12622, Giza, Egypt.

Chemistry of Natural and Microbial Products Department, National Research Center (NRC), Giza, Egypt.

出版信息

Sci Rep. 2025 Aug 20;15(1):30561. doi: 10.1038/s41598-025-14571-2.

Abstract

In the current study, oxidized cellulose onto cellulose tricarboxylate (CTC) using 2,2,6,6 tetramethylpiperidine-1-oxyl (TEMPO) and periodate-chlorite oxidation. The ethyl-3-(4-chlorophenyl)-2-cyanoacrylate (W) and 2-chloro3-hydarzinoquinoxaline (R) were formulated into CTC and coded, CTC/W and CTC/R, respectively, that were utilized as ligands in the design synthesis of novel nanocomposites. The prepared nanocomposites were characterized using Fourier-transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Molecular docking and Molecular dynamic (MD) simulations that supported the antimicrobial and cytotoxicity assays were carried out. Physicochemical analysis and topographic studies have affirmed the formulation of nanocomposites. The antimicrobial tests revealed a significant.CTC exhibited more potent activity than CTC/W, indicating its potential as an effective antimicrobial agent. The cytotoxicity test against BJ1 normal cells showed a low effect toward nanocomposites at a 100 µg/mL concentration. A molecular dynamics simulation study of the most active CTC/R and CTC/W was performed to calculate binding free energies using molecular mechanics-generalized born surface area (MM/GBSA). Furthermore, the computational studies revealed that CTC/W showed a high affinity toward the active site of E. coli beta-Ketoacyl-acyl carrier protein synthase III Ec FabH, which provides a strong platform for new structure-based design efforts.

摘要

在当前研究中,使用2,2,6,6-四甲基哌啶-1-氧基(TEMPO)和高碘酸盐-亚氯酸盐氧化法将纤维素氧化为三羧基纤维素(CTC)。将3-(4-氯苯基)-2-氰基丙烯酸乙酯(W)和2-氯-3-肼基喹喔啉(R)分别配制成CTC并编码为CTC/W和CTC/R,它们被用作新型纳米复合材料设计合成中的配体。使用傅里叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对制备的纳米复合材料进行了表征。进行了支持抗菌和细胞毒性试验的分子对接和分子动力学(MD)模拟。物理化学分析和形貌研究证实了纳米复合材料的配方。抗菌测试显示出显著效果。CTC表现出比CTC/W更强的活性,表明其作为有效抗菌剂的潜力。对BJ1正常细胞的细胞毒性测试表明,在100μg/mL浓度下,纳米复合材料对细胞的影响较小。对活性最强的CTC/R和CTC/W进行了分子动力学模拟研究,以使用分子力学-广义玻恩表面积(MM/GBSA)计算结合自由能。此外,计算研究表明,CTC/W对大肠杆菌β-酮酰基-酰基载体蛋白合成酶III(Ec FabH)的活性位点具有高亲和力,这为基于新结构的设计努力提供了强大平台。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验