González-Martos Raquel, Galeano Javier, Ramirez-Castillejo Carmen, Gusi Narcis, Gesteiro Eva, Vicente-Rodriguez German, Ara Ignacio, Guadalupe-Grau Amelia
Centro de Tecnología Biomédica (CTB), Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid, 28040, Madrid, Spain.
GENUD Toledo Research Group, Faculty of Sport Sciences, University of Castilla-La Mancha, Avda. Calos III S/N, 45071, Toledo, Spain.
Sci Rep. 2025 Aug 20;15(1):30546. doi: 10.1038/s41598-025-14580-1.
This study explores the relationships between biochemical phenotypes identified using machine learning, and key health outcomes, including body composition, physical function, and mortality risk. Data were collected from 536 physically active Spanish participants aged over 65 years (76.5% women) enrolled in the EXERNET cohort (2017-2018), with a 6-year mortality follow-up. Principal component analysis, and hierarchical and k-means clustering was used to identify distinct biochemical profiles. Associations between clusters and health outcomes were assessed using analysis of covariance and Cox proportional hazards models. Three distinct clusters emerged: 'Healthy', characterized by biochemical values within the normal range and used as the reference group; 'Metabolic', marked by dysregulated metabolic parameters; and 'Hepatic', which exhibited impaired liver function markers. Notably, all clusters showed subclinical levels of dysfunction. The 'Healthy Cluster' demonstrated the highest levels of organized physical activity (90%, p < 0.001), whereas the 'Metabolic Cluster' showed poorer body composition and reduced physical performance. Both the 'Metabolic' and 'Hepatic' clusters demonstrated a higher mortality risk, as confirmed through Cox regression analyses. Adjusted hazard ratios were significantly elevated when considering physical activity and adiposity, with values of 3.45 and 3.71 for the 'Metabolic Cluster', and 3.01 and 3.85 for the 'Hepatic Cluster' (p < 0.05). This study underscores the strong link between metabolic health, physical activity, body composition and 6-years mortality risk in older adults. Machine learning techniques for identifying phenotypic clusters offers a promising tool for early detection and targeted interventions to improve aging outcomes.
本研究探讨了使用机器学习识别的生化表型与关键健康结果之间的关系,这些关键健康结果包括身体成分、身体功能和死亡风险。数据收集自EXERNET队列(2017 - 2018年)中536名年龄超过65岁的身体活跃的西班牙参与者(76.5%为女性),并进行了为期6年的死亡率随访。使用主成分分析、层次聚类和k均值聚类来识别不同的生化特征。使用协方差分析和Cox比例风险模型评估聚类与健康结果之间的关联。出现了三个不同的聚类:“健康”聚类,其特征是生化值在正常范围内,并用作参考组;“代谢”聚类,其特征是代谢参数失调;以及“肝脏”聚类,其表现出肝功能标志物受损。值得注意的是,所有聚类均显示出亚临床水平的功能障碍。“健康聚类”表现出最高水平的有组织体育活动(90%,p < 0.001),而“代谢聚类”的身体成分较差且身体表现下降。通过Cox回归分析证实,“代谢”聚类和“肝脏”聚类均表现出较高的死亡风险。在考虑体育活动和肥胖因素时,调整后的风险比显著升高,“代谢聚类”的值为3.45和3.71,“肝脏聚类”的值为3.01和3.85(p < 0.05)。本研究强调了老年人代谢健康、体育活动、身体成分与6年死亡风险之间的紧密联系。用于识别表型聚类的机器学习技术为早期检测和有针对性的干预提供了一个有前景的工具,以改善衰老结果。