文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

OncoMet:一种深度学习框架,用于利用原发性肿瘤的组织病理学图像预测食管癌患者的致癌信号通路和转移情况。

OncoMet: a deep learning framework for the prediction of oncogenic signaling pathways and metastasis in esophageal cancer patients using histopathology images from primary tumors.

作者信息

Aalam Syed Wajid, Ahanger Abdul Basit, Majeed Tabasum, Ahanger Ab Naffi, Masoodi Tariq, Bhat Ajaz A, Assad Assif, Macha Muzafar Ahmad, Bhat Muzafar Rasool

机构信息

Department of Computer Science, Islamic University of Science and Technology (IUST), Awantipora, Kashmir, India.

Centre for Artificial Intelligence, Islamic University of Science and Technology, Awantipora, Kashmir, India.

出版信息

J Transl Med. 2025 Aug 21;23(1):945. doi: 10.1186/s12967-025-06914-4.


DOI:10.1186/s12967-025-06914-4
PMID:40842012
Abstract

BACKGROUND: Despite recent advancements in the diagnosis and prognosis of Esophageal cancer (EC), it remains among the leading causes of cancer-related mortality. Timely and cost-effective diagnosis, particularly in predicting the risk of metastasis and identifying the deregulation of oncogenic signaling pathways, could open new frontiers towards precision medicine and targeted therapy of EC. However, current diagnostic practices in identifying metastasis and deregulated oncogenic pathways involve molecular testing, which is time-consuming and costly. Advances in deep learning analysis of digital pathological imagery data offer promising avenues for automating and enhancing cancer diagnosis and risk stratification. METHODS: High-resolution H&E-stained diagnostic whole slide images were obtained from the open repository of The Cancer Genome Atlas (TCGA). The WSIs underwent several pre-processing steps, including patching, color normalization and augmentation. A deep learning model was designed and trained on WSI data and tissue-level labels to generate image feature representations for predicting metastatic potential and identifying the deregulation of four major oncogenic signaling pathways, viz. mTOR, PTEN, p53, and PI3K/AKT. RESULTS: The proposed model achieved an AUC of 0.92 for predicting metastatic risk and AUCs ranging from 0.64 to 0.92 for the identification of deregulated oncogenic pathways. In a first, we were able to operate the model without the need for exhaustive patch-level annotations, relying instead on slide-level annotations only. CONCLUSION: In this work, we highlighted the transformative potential of deep learning in accurately detecting metastasis and identifying deregulated oncogenic pathways from H&E slides using slide-level annotation, thus opening new doors in precision medicine and targeted therapy.

摘要

背景:尽管食管癌(EC)的诊断和预后方面最近取得了进展,但它仍然是癌症相关死亡的主要原因之一。及时且具有成本效益的诊断,特别是在预测转移风险和识别致癌信号通路失调方面,可能为EC的精准医学和靶向治疗开辟新的途径。然而,目前识别转移和失调致癌途径的诊断方法涉及分子检测,既耗时又昂贵。数字病理图像数据的深度学习分析进展为自动化和加强癌症诊断及风险分层提供了有前景的途径。 方法:从癌症基因组图谱(TCGA)的开放数据库中获取高分辨率苏木精-伊红(H&E)染色的诊断全切片图像。对全切片图像进行了几个预处理步骤,包括分块、颜色归一化和增强。设计并训练了一个深度学习模型,该模型基于全切片图像数据和组织水平标签生成图像特征表示,以预测转移潜力并识别四种主要致癌信号通路,即mTOR、PTEN、p53和PI3K/AKT的失调。 结果:所提出的模型在预测转移风险方面的曲线下面积(AUC)为0.92,在识别失调致癌途径方面的AUC范围为0.64至0.92。首先,我们能够仅依靠玻片水平注释来运行该模型,而无需详尽的斑块水平注释。 结论:在这项工作中,我们强调了深度学习在使用玻片水平注释从H&E切片中准确检测转移和识别失调致癌途径方面的变革潜力,从而为精准医学和靶向治疗打开了新的大门。

相似文献

[1]
OncoMet: a deep learning framework for the prediction of oncogenic signaling pathways and metastasis in esophageal cancer patients using histopathology images from primary tumors.

J Transl Med. 2025-8-21

[2]
Artificial intelligence-based prediction of organ involvement in Sjogren's syndrome using labial gland biopsy whole-slide images.

Clin Rheumatol. 2025-6-5

[3]
Development and Validation of a Convolutional Neural Network Model to Predict a Pathologic Fracture in the Proximal Femur Using Abdomen and Pelvis CT Images of Patients With Advanced Cancer.

Clin Orthop Relat Res. 2023-11-1

[4]
Development and clinical validation of deep learning-based immunohistochemistry prediction models for subtyping and staging of gastrointestinal cancers.

BMC Gastroenterol. 2025-7-1

[5]
A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases.

Br J Dermatol. 2024-7-16

[6]
Deep learning in histopathology images for prediction of oncogenic driver molecular alterations in lung cancer: a systematic review and meta-analysis.

Transl Lung Cancer Res. 2025-5-30

[7]
Self-supervised deep metric learning for prototypical zero-shot lesion retrieval in placenta whole-slide images.

Comput Biol Med. 2025-9

[8]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

[9]
Identifying primary tumor site of origin for liver metastases via a combination of handcrafted and deep learning features.

J Pathol Clin Res. 2024-1

[10]
Direct Prediction of 48 Month Survival Status in Patients with Uveal Melanoma Using Deep Learning and Digital Cytopathology Images.

Cancers (Basel). 2025-1-13

本文引用的文献

[1]
Deep learning-based pathological prediction of lymph node metastasis for patient with renal cell carcinoma from primary whole slide images.

J Transl Med. 2024-6-14

[2]
Esophageal cancer screening, early detection and treatment: Current insights and future directions.

World J Gastrointest Oncol. 2024-4-15

[3]
Deep learning-based identification of esophageal cancer subtypes through analysis of high-resolution histopathology images.

Front Mol Biosci. 2024-3-19

[4]
From pixels to patient care: deep learning-enabled pathomics signature offers precise outcome predictions for immunotherapy in esophageal squamous cell cancer.

J Transl Med. 2024-2-22

[5]
Machine learning-based classifiers to predict metastasis in colorectal cancer patients.

Front Artif Intell. 2024-1-24

[6]
Analyzing Mortality Patterns and Location of Death in Patients With Malignant Esophageal Neoplasms: A Two-Decade Study in the United States.

Cureus. 2023-12-13

[7]
Global trends in esophageal cancer mortality with predictions to 2025, and in incidence by histotype.

Cancer Epidemiol. 2023-12

[8]
TP53 Mutations in Esophageal Squamous Cell Carcinoma.

Front Biosci (Landmark Ed). 2023-9-24

[9]
Metastasis.

Cell. 2023-4-13

[10]
Predicting metastasis in gastric cancer patients: machine learning-based approaches.

Sci Rep. 2023-3-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索