Suppr超能文献

基于超声成像数据的深度学习与临床特征相结合的预测模型,用于8个月以下儿童肠套叠的手术干预

Predictive model integrating deep learning and clinical features based on ultrasound imaging data for surgical intervention in intussusception in children younger than 8 months.

作者信息

Qian Yu-Feng, Zhou Jin-Jin, Shi San-Li, Guo Wan-Liang

机构信息

Radiology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China.

Radiology, Affiliated Changzhou Children's Hospital of Nantong University, Changzhou, Jiangsu, China.

出版信息

BMJ Open. 2025 Aug 22;15(8):e097575. doi: 10.1136/bmjopen-2024-097575.

Abstract

OBJECTIVES

The objective of this study was to identify risk factors for enema reduction failure and to establish a combined model that integrates deep learning (DL) features and clinical features for predicting surgical intervention in intussusception in children younger than 8 months of age.

DESIGN

A retrospective study with a prospective validation cohort of intussusception.

SETTING AND DATA

The retrospective data were collected from two hospitals in south east China between January 2017 and December 2022. The prospective data were collected between January 2023 and July 2024.

PARTICIPANTS

A total of 415 intussusception cases in patients younger than 8 months were included in the study.

METHODS

280 cases collected from Centre 1 were randomly divided into two groups at a 7:3 ratio: the training cohort (n=196) and the internal validation cohort (n=84). 85 cases collected from Centre 2 were designed as external validation cohort. Pretrained DL networks were used to extract deep transfer learning features, with least absolute shrinkage and selection operator regression selecting the non-zero coefficient features. The clinical features were screened by univariate and multivariate logistic regression analyses. We constructed a combined model that integrated the selected two types of features, along with individual clinical and DL models for comparison. Additionally, the combined model was validated in a prospective cohort (n=50) collected from Centre 1.

RESULTS

In the internal and external validation cohorts, the combined model (area under curve (AUC): 0.911 and 0.871, respectively) demonstrated better performance for predicting surgical intervention in intussusception in children younger than 8 months of age than the clinical model (AUC: 0.776 and 0.740, respectively) and the DL model (AUC: 0.828 and 0.793, respectively). In the prospective validation cohort, the combined model also demonstrated impressive performance with an AUC of 0.890.

CONCLUSION

The combined model, integrating DL and clinical features, demonstrated stable predictive accuracy, suggesting its potential for improving clinical therapeutic strategies for intussusception.

摘要

目的

本研究的目的是确定灌肠复位失败的危险因素,并建立一个整合深度学习(DL)特征和临床特征的联合模型,用于预测8个月以下儿童肠套叠的手术干预。

设计

一项对肠套叠前瞻性验证队列的回顾性研究。

地点和数据

回顾性数据收集于2017年1月至2022年12月期间中国东南部的两家医院。前瞻性数据收集于2023年1月至2024年7月期间。

参与者

本研究共纳入415例8个月以下肠套叠患儿。

方法

从中心1收集的280例病例按7:3的比例随机分为两组:训练队列(n = 196)和内部验证队列(n = 84)。从中心2收集的85例病例作为外部验证队列。使用预训练的DL网络提取深度迁移学习特征,通过最小绝对收缩和选择算子回归选择非零系数特征。通过单因素和多因素逻辑回归分析筛选临床特征。我们构建了一个整合所选两种特征的联合模型,以及用于比较的个体临床和DL模型。此外,联合模型在从中心1收集的前瞻性队列(n = 50)中进行了验证。

结果

在内部和外部验证队列中,联合模型(曲线下面积(AUC)分别为0.911和0.871)在预测8个月以下儿童肠套叠手术干预方面表现优于临床模型(AUC分别为0.776和0.740)和DL模型(AUC分别为0.828和0.793)。在前瞻性验证队列中,联合模型也表现出令人印象深刻的性能,AUC为0.890。

结论

整合DL和临床特征的联合模型表现出稳定的预测准确性,表明其在改善肠套叠临床治疗策略方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2da/12374633/e1b33a66f301/bmjopen-15-8-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验