Bai Yichen, Liu Yueze, Zhang Yang, Tolba Amr
School of Information Science and Engineering, Lanzhou University, Lanzhou, China.
Cyberspace Administration of Lanzhou University, Lanzhou, China.
Front Psychiatry. 2025 Aug 7;16:1468334. doi: 10.3389/fpsyt.2025.1468334. eCollection 2025.
Depression is a rising global health issue, particularly among adolescents, with university students facing distinct mental health challenges.
This proof-of-concept study explores smartphone sensor-based depression detection in Chinese university campus settings using a small sample of 12 participants. We utilized data from accelerometers, gyroscopes, and light sensors to establish associations between smartphone-derived behavioral patterns and PHQ-9 scores, a standard depression measure. A customized data processing scheme tailored to campus life enabled the extraction of 18 feature sequences reflecting depressive symptoms. Feature selection was conducted using Pearson correlation, and model validation was performed using leave-one-out cross-validation with common classification algorithms.
The results yielded accuracy rates between 73.11% and 88.24%. Findings showed negative correlations between PHQ-9 scores and dietary regularity, bedtime, and physical activity levels.
This pioneering study highlights smartphone sensors' potential for early depression detection in Chinese higher education, supporting non-invasive mental health interventions.
抑郁症是一个日益严重的全球性健康问题,尤其是在青少年中,大学生面临着独特的心理健康挑战。
这项概念验证研究使用12名参与者的小样本,探索中国大学校园环境中基于智能手机传感器的抑郁症检测。我们利用来自加速度计、陀螺仪和光传感器的数据,建立智能手机衍生的行为模式与PHQ-9评分(一种标准抑郁症测量方法)之间的关联。一种针对校园生活定制的数据处理方案能够提取18个反映抑郁症状的特征序列。使用皮尔逊相关性进行特征选择,并使用常见分类算法通过留一法交叉验证进行模型验证。
结果产生的准确率在73.11%至88.24%之间。研究结果表明,PHQ-9评分与饮食规律、就寝时间和身体活动水平之间存在负相关。
这项开创性研究突出了智能手机传感器在中国高等教育中早期抑郁症检测的潜力,支持非侵入性心理健康干预。