Suppr超能文献

利用监督学习提高磁共振分辨率

IMPROVING MAGNETIC RESONANCE RESOLUTION WITH SUPERVISED LEARNING.

作者信息

Jog Amod, Carass Aaron, Prince Jerry L

机构信息

Image Analysis and Communications Laboratory, The Johns Hopkins University.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2014;2014:987-990. doi: 10.1109/ISBI.2014.6868038.

Abstract

Despite ongoing improvements in magnetic resonance (MR) imaging (MRI), considerable clinical and, to a lesser extent, research data is acquired at lower resolutions. For example 1 mm isotropic acquisition of -weighted (-w) Magnetization Prepared Rapid Gradient Echo (MPRAGE) is standard practice, however -weighted (-w)-because of its longer relaxation times (and thus longer scan time)-is still routinely acquired with slice thicknesses of 2-5 mm and in-plane resolution of 2-3 mm. This creates obvious fundamental problems when trying to process -w and -w data in concert. We present an automated supervised learning algorithm to generate high resolution data. The framework is similar to the brain hallucination work of Rousseau, taking advantage of new developments in regression based image reconstruction. We present validation on phantom and real data, demonstrating the improvement over state-of-the-art super-resolution techniques.

摘要

尽管磁共振(MR)成像(MRI)技术不断进步,但仍有大量临床数据以及少量研究数据是在较低分辨率下获取的。例如,1毫米各向同性采集的T1加权(T1-w)磁化准备快速梯度回波(MPRAGE)是标准做法,然而,由于T2加权(T2-w)成像的弛豫时间更长(因此扫描时间也更长),其切片厚度通常仍为2至5毫米,平面分辨率为2至3毫米。在尝试协同处理T1-w和T2-w数据时,这会带来明显的基本问题。我们提出了一种自动监督学习算法来生成高分辨率数据。该框架类似于卢梭的脑幻觉研究,利用了基于回归的图像重建的新进展。我们在体模和真实数据上进行了验证,证明了相对于现有超分辨率技术的改进。

相似文献

1
IMPROVING MAGNETIC RESONANCE RESOLUTION WITH SUPERVISED LEARNING.
Proc IEEE Int Symp Biomed Imaging. 2014;2014:987-990. doi: 10.1109/ISBI.2014.6868038.
4
Multipathway multi-echo (MPME) imaging: all main MR parameters mapped based on a single 3D scan.
Magn Reson Med. 2019 Mar;81(3):1699-1713. doi: 10.1002/mrm.27525. Epub 2018 Oct 15.
5
Free-running simultaneous myocardial T1/T2 mapping and cine imaging with 3D whole-heart coverage and isotropic spatial resolution.
Magn Reson Imaging. 2019 Nov;63:159-169. doi: 10.1016/j.mri.2019.08.008. Epub 2019 Aug 16.
7
Multi-contrast brain magnetic resonance image super-resolution using the local weight similarity.
BMC Med Imaging. 2017 Jan 17;17(1):6. doi: 10.1186/s12880-016-0176-2.
10
STRESS: Super-Resolution for Dynamic Fetal MRI using Self-Supervised Learning.
Med Image Comput Comput Assist Interv. 2021 Sep-Oct;12907:197-206. doi: 10.1007/978-3-030-87234-2_19. Epub 2021 Sep 21.

引用本文的文献

1
TV-BASED DEEP 3D SELF SUPER-RESOLUTION FOR FMRI.
Proc IEEE Int Symp Biomed Imaging. 2025 Apr;2025. doi: 10.1109/isbi60581.2025.10980709. Epub 2025 May 12.
2
Multi-Conditional Constraint Generative Adversarial Network-Based MR Imaging from CT Scan Data.
Sensors (Basel). 2022 May 26;22(11):4043. doi: 10.3390/s22114043.
3
FA-GAN: Fused attentive generative adversarial networks for MRI image super-resolution.
Comput Med Imaging Graph. 2021 Sep;92:101969. doi: 10.1016/j.compmedimag.2021.101969. Epub 2021 Aug 10.
4
SMORE: A Self-Supervised Anti-Aliasing and Super-Resolution Algorithm for MRI Using Deep Learning.
IEEE Trans Med Imaging. 2021 Mar;40(3):805-817. doi: 10.1109/TMI.2020.3037187. Epub 2021 Mar 2.
5
MRI-based attenuation correction for brain PET/MRI based on anatomic signature and machine learning.
Phys Med Biol. 2019 Jan 7;64(2):025001. doi: 10.1088/1361-6560/aaf5e0.
6
Magnetic resonance imaging-based pseudo computed tomography using anatomic signature and joint dictionary learning.
J Med Imaging (Bellingham). 2018 Jul;5(3):034001. doi: 10.1117/1.JMI.5.3.034001. Epub 2018 Aug 24.
7
Medical Image Imputation from Image Collections.
IEEE Trans Med Imaging. 2018 Aug 22. doi: 10.1109/TMI.2018.2866692.
8
Medical Image Synthesis with Context-Aware Generative Adversarial Networks.
Med Image Comput Comput Assist Interv. 2017 Sep;10435:417-425. doi: 10.1007/978-3-319-66179-7_48. Epub 2017 Sep 4.
9
Region-adaptive Deformable Registration of CT/MRI Pelvic Images via Learning-based Image Synthesis.
IEEE Trans Image Process. 2018 Mar 30. doi: 10.1109/TIP.2018.2820424.
10
Medical Image Synthesis with Deep Convolutional Adversarial Networks.
IEEE Trans Biomed Eng. 2018 Dec;65(12):2720-2730. doi: 10.1109/TBME.2018.2814538. Epub 2018 Mar 9.

本文引用的文献

1
Example-based restoration of high-resolution magnetic resonance image acquisitions.
Med Image Comput Comput Assist Interv. 2013;16(Pt 1):131-8. doi: 10.1007/978-3-642-40811-3_17.
2
MAGNETIC RESONANCE IMAGE SYNTHESIS THROUGH PATCH REGRESSION.
Proc IEEE Int Symp Biomed Imaging. 2013 Dec 31;2013:350-353. doi: 10.1109/ISBI.2013.6556484.
3
A compressed sensing approach for MR tissue contrast synthesis.
Inf Process Med Imaging. 2011;22:371-83. doi: 10.1007/978-3-642-22092-0_31.
4
MRI superresolution using self-similarity and image priors.
Int J Biomed Imaging. 2010;2010:425891. doi: 10.1155/2010/425891. Epub 2010 Dec 8.
5
Multi-parametric neuroimaging reproducibility: a 3-T resource study.
Neuroimage. 2011 Feb 14;54(4):2854-66. doi: 10.1016/j.neuroimage.2010.11.047. Epub 2010 Nov 20.
6
Non-local MRI upsampling.
Med Image Anal. 2010 Dec;14(6):784-92. doi: 10.1016/j.media.2010.05.010. Epub 2010 Jun 4.
7
Synthesizing MR Contrast and Resolution through a Patch Matching Technique.
Proc SPIE Int Soc Opt Eng. 2010;7623:76230j. doi: 10.1117/12.844575.
8
Joint MAP registration and high-resolution image estimation using a sequence of undersampled images.
IEEE Trans Image Process. 1997;6(12):1621-33. doi: 10.1109/83.650116.
9
MRI inter-slice reconstruction using super-resolution.
Magn Reson Imaging. 2002 Jun;20(5):437-46. doi: 10.1016/s0730-725x(02)00511-8.
10
MRI simulation-based evaluation of image-processing and classification methods.
IEEE Trans Med Imaging. 1999 Nov;18(11):1085-97. doi: 10.1109/42.816072.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验