Jog Amod, Carass Aaron, Prince Jerry L
Image Analysis and Communications Laboratory, The Johns Hopkins University.
Proc IEEE Int Symp Biomed Imaging. 2014;2014:987-990. doi: 10.1109/ISBI.2014.6868038.
Despite ongoing improvements in magnetic resonance (MR) imaging (MRI), considerable clinical and, to a lesser extent, research data is acquired at lower resolutions. For example 1 mm isotropic acquisition of -weighted (-w) Magnetization Prepared Rapid Gradient Echo (MPRAGE) is standard practice, however -weighted (-w)-because of its longer relaxation times (and thus longer scan time)-is still routinely acquired with slice thicknesses of 2-5 mm and in-plane resolution of 2-3 mm. This creates obvious fundamental problems when trying to process -w and -w data in concert. We present an automated supervised learning algorithm to generate high resolution data. The framework is similar to the brain hallucination work of Rousseau, taking advantage of new developments in regression based image reconstruction. We present validation on phantom and real data, demonstrating the improvement over state-of-the-art super-resolution techniques.
尽管磁共振(MR)成像(MRI)技术不断进步,但仍有大量临床数据以及少量研究数据是在较低分辨率下获取的。例如,1毫米各向同性采集的T1加权(T1-w)磁化准备快速梯度回波(MPRAGE)是标准做法,然而,由于T2加权(T2-w)成像的弛豫时间更长(因此扫描时间也更长),其切片厚度通常仍为2至5毫米,平面分辨率为2至3毫米。在尝试协同处理T1-w和T2-w数据时,这会带来明显的基本问题。我们提出了一种自动监督学习算法来生成高分辨率数据。该框架类似于卢梭的脑幻觉研究,利用了基于回归的图像重建的新进展。我们在体模和真实数据上进行了验证,证明了相对于现有超分辨率技术的改进。