Suppr超能文献

利用人工智能驱动的反向对接进行药物发现:机遇、挑战及新趋势的全面综述

Harnessing AI-driven reverse docking in drug discovery: a comprehensive review of opportunities, challenges, and emerging trends.

作者信息

Durojaye Olanrewaju Ayodeji, Bellah Sm Faysal, Uzoeto Henrietta Onyinye, Okoro Nkwachukwu Oziamara, Cosmas Samuel, Ajima Judith Nnedimkpa, Arazu Amarachukwu Vivian, Ezechukwu Somtochukwu Precious, Ezechukwu Chiemekam Samuel, Odiba Arome Solomon

机构信息

Drug Discovery and Biotechnology Unit, Lion Science Park, University of Nigeria, Nsukka, 410001, Nigeria.

Department of Chemical Sciences, Coal City University, Emene, Enugu State, Nigeria.

出版信息

J Mol Model. 2025 Aug 25;31(9):256. doi: 10.1007/s00894-025-06480-y.

Abstract

CONTEXT

The integration of artificial intelligence (AI) with reverse docking methodologies is reshaping drug discovery by streamlining the identification of drug targets and therapeutic interactions. This approach is pivotal in drug repurposing, safety profiling, and predicting off-target effects. Reverse docking uniquely identifies potential binding sites across diverse protein targets, providing insights into drug efficacy and adverse outcomes. AI technologies, such as machine learning, deep learning, and reinforcement learning, enhance this workflow by optimizing target selection, virtual screening, and conformational sampling. Despite challenges like data limitations and algorithmic complexities, AI-driven reverse docking has shown promise in drug repurposing and precision medicine, as illustrated by successful case studies. This review highlights its transformative potential and future prospects, including the incorporation of multi-omics data and real-time discovery pipelines for personalized medicine.

METHODS

The computational strategies discussed leverage reverse docking platforms integrated with AI frameworks. Machine learning and deep learning models were employed for target selection and interaction prediction, while reinforcement learning facilitated advanced sampling techniques. Virtual screening workflows incorporated AI-driven optimizations for docking simulations. These methodologies were implemented using widely recognized computational tools, including AI libraries and molecular docking software, ensuring robust and reproducible results. Challenges in data integration were addressed by employing high-throughput pipelines capable of processing multi-omics datasets, thus supporting comprehensive drug discovery initiatives.

摘要

背景

人工智能(AI)与反向对接方法的整合正在通过简化药物靶点识别和治疗相互作用来重塑药物发现。这种方法在药物再利用、安全性分析和预测脱靶效应方面至关重要。反向对接独特地识别各种蛋白质靶点上的潜在结合位点,为药物疗效和不良结果提供见解。机器学习、深度学习和强化学习等人工智能技术通过优化靶点选择、虚拟筛选和构象采样来增强这一工作流程。尽管存在数据限制和算法复杂性等挑战,但如成功案例研究所示,人工智能驱动的反向对接在药物再利用和精准医学方面已显示出前景。本综述强调了其变革潜力和未来前景,包括纳入多组学数据和用于个性化医学的实时发现管道。

方法

所讨论的计算策略利用了与人工智能框架集成的反向对接平台。机器学习和深度学习模型用于靶点选择和相互作用预测,而强化学习促进了先进的采样技术。虚拟筛选工作流程纳入了人工智能驱动的对接模拟优化。这些方法使用广泛认可的计算工具来实施,包括人工智能库和分子对接软件,确保结果的稳健性和可重复性。通过采用能够处理多组学数据集的高通量管道来解决数据整合中的挑战,从而支持全面的药物发现计划。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验