Suppr超能文献

YOLOv11-AIU:一种用于番茄早疫病分级检测的轻量级检测模型。

YOLOv11-AIU: a lightweight detection model for the grading detection of early blight disease in tomatoes.

作者信息

Tang Xiuying, Sun Zhongqing, Yang Linlin, Chen Qin, Liu Zhenglin, Wang Pei, Zhang Yonghua

机构信息

College of Mechanical and Electrical Engineering, Yunnan Agricultural University, Kunming, 650201, China.

Engineering University of PLA Joint Logistics Support Force, Chongqing, 401331, China.

出版信息

Plant Methods. 2025 Aug 25;21(1):118. doi: 10.1186/s13007-025-01435-z.

Abstract

Tomato early blight, caused by Alternaria solani, poses a significant threat to crop yields. Existing detection methods often struggle to accurately identify small or multi-scale lesions, particularly in early stages when symptoms exhibit low contrast and only subtle differences from healthy tissue. Blurred lesion boundaries and varying degrees of severity further complicate accurate detection. To address these challenges, we present YOLOv11-AIU, a lightweight object detection model built on an enhanced YOLOv11 framework, specifically designed for severity grading of tomato early blight. The model integrates a C3k2_iAFF attention fusion module to strengthen feature representation, an Adown multi-branch downsampling structure to preserve fine-scale lesion features, and a Unified-IoU loss function to enhance bounding box regression accuracy. A six-level annotated dataset was constructed and expanded to 5,000 images through data augmentation. Experimental results demonstrate that YOLOv11-AIU outperforms models such as YOLOv3-tiny, YOLOv8n, and SSD, achieving a mAP@50 of 94.1%, mAP@50-95 of 93.4%, and an inference speed of 15.67 FPS. When deployed on the Luban Cat5 platform, the model achieved real-time performance, highlighting its strong potential for practical, field-based disease detection in precision agriculture and intelligent plant health monitoring.

摘要

由链格孢菌引起的番茄早疫病对作物产量构成重大威胁。现有的检测方法往往难以准确识别小的或多尺度的病斑,特别是在早期阶段,此时症状对比度低,与健康组织仅有细微差异。病斑边界模糊和严重程度不同进一步使准确检测变得复杂。为应对这些挑战,我们提出了YOLOv11-AIU,这是一种基于增强型YOLOv11框架构建的轻量级目标检测模型,专门用于番茄早疫病的严重程度分级。该模型集成了一个C3k2_iAFF注意力融合模块以增强特征表示,一个Adown多分支下采样结构以保留精细尺度的病斑特征,以及一个统一IoU损失函数以提高边界框回归精度。通过数据增强构建了一个六级标注数据集,并将其扩展到5000张图像。实验结果表明,YOLOv11-AIU优于YOLOv3-tiny、YOLOv8n和SSD等模型,实现了94.1%的mAP@50、93.4%的mAP@50-95以及15.67 FPS的推理速度。当部署在鲁班Cat5平台上时,该模型实现了实时性能,突出了其在精准农业和智能植物健康监测中基于实地的实际病害检测的强大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验