Suppr超能文献

在锗量子点中保真度超过99.9%的高保真几何量子门。

High-fidelity geometric quantum gates exceeding 99.9% in germanium quantum dots.

作者信息

Zhou Yu-Chen, Ma Rong-Long, Kong Zhenzhen, Li Ao-Ran, Zhang Chengxian, Zhang Xin, Liu Yang, Jiang Hao-Tian, Wu Zhi-Tao, Wang Gui-Lei, Cao Gang, Guo Guang-Can, Li Hai-Ou, Guo Guo-Ping

机构信息

Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui, China.

CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, China.

出版信息

Nat Commun. 2025 Aug 26;16(1):7953. doi: 10.1038/s41467-025-63241-4.

Abstract

Achieving high-fidelity and robust qubit manipulations is a crucial requirement for realizing fault-tolerant quantum computation. Here, we demonstrate a single-hole spin qubit in a germanium quantum dot and characterize its control fidelity using gate set tomography. The maximum control fidelities reach 97.48%, 99.81%, 99.88% for the I, X/2 and Y/2 gate, respectively. These results reveal that off-resonance noise during consecutive I gates in gate set tomography sequences severely limits qubit performance. Therefore, we introduce geometric quantum computation to realize noise-resilient qubit manipulation. The geometric gate control fidelities remain above 99% across a wide range of Rabi frequencies. The maximum fidelity surpasses 99.9%. Furthermore, the fidelities of geometric X/2 and Y/2 (I) gates exceed 99% even when detuning the microwave frequency by  ± 2.5 MHz (± 1.2 MHz), highlighting the noise-resilient feature. These results demonstrate that geometric quantum computation is a potential method for achieving high-fidelity qubit manipulation reproducibly in semiconductor quantum computation.

摘要

实现高保真且稳健的量子比特操控是实现容错量子计算的一项关键要求。在此,我们展示了锗量子点中的单空穴自旋量子比特,并使用门集合层析成像来表征其控制保真度。对于I门、X/2门和Y/2门,最大控制保真度分别达到97.48%、99.81%和99.88%。这些结果表明,门集合层析成像序列中连续I门期间的失谐噪声严重限制了量子比特性能。因此,我们引入几何量子计算来实现抗噪声的量子比特操控。在很宽的拉比频率范围内,几何门控制保真度保持在99%以上。最大保真度超过99.9%。此外,即使将微波频率失谐±2.5兆赫兹(±1.2兆赫兹),几何X/2门和Y/2(I)门的保真度仍超过99%,突出了其抗噪声特性。这些结果表明,几何量子计算是一种在半导体量子计算中可重复实现高保真量子比特操控的潜在方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/167a/12381234/0eec367bc52d/41467_2025_63241_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验