Cevallos Cintia, Jarmoluk Patricio, Sviercz Franco, Freiberger Rosa Nicole, López Cynthia Alicia Marcela, Delpino M Victoria, Quarleri Jorge
Universidad de Buenos Aires (UBA), Consejo de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Laboratorio de Inmunopatogénesis Viral, Buenos Aires, Argentina.
Front Cell Infect Microbiol. 2025 Aug 11;15:1625928. doi: 10.3389/fcimb.2025.1625928. eCollection 2025.
Although COVID-19 primarily affects the respiratory tract, liver injury has been increasingly reported in infected individuals. The mechanisms by which SARS-CoV-2 induces hepatocyte damage remain poorly understood. Given the role of mitochondrial dysfunction, oxidative stress, and regulated cell death in COVID-19 pathogenesis, we investigated the impact of SARS-CoV-2 infection on hepatocytes using the Huh7.5 cell model.
Huh7.5 hepatocytes were infected with either the ancestral Wuhan (Wh) or Omicron (BA.5) variant of SARS-CoV-2. Viral replication was quantified via RT-qPCR, nucleocapsid protein detection, and infectious particle titration. Mitochondrial function was assessed through mitochondrial membrane potential (ΔΨm), mROS production, and mitophagy analysis. Lipid metabolism and regulated cell death (apoptosis, pyroptosis, ferroptosis) were evaluated by confocal microscopy and flow cytometry. The role of specific cell death pathways was probed using chemical inhibitors.
Both SARS-CoV-2 variants efficiently infected Huh7.5 cells, with distinct replication kinetics. Infection induced mitochondrial fragmentation, elevated mROS levels, and lipid droplet accumulation. Ferroptosis was identified as a predominant mode of cell death, as evidenced by increased lipid peroxidation and the protective effect of ferrostatin-1. Expression of angiotensin-converting enzyme 2 (ACE2) and transferrin receptor 1 (TfR1), a ferroptosis marker and alternative viral entry receptor, was significantly upregulated post-infection in a variant-dependent manner. Additionally, mROS scavenging with MitoTEMPO impaired viral replication, underscoring the role of oxidative stress in the SARS-CoV-2 life cycle.
SARS-CoV-2 disrupts mitochondrial homeostasis and lipid metabolism in hepatocytes, promoting ferroptosis as a major contributor to virus-induced cytopathology. These findings suggest that ferroptosis may play a central role in COVID-19-related liver injury and identify mitochondrial ROS and iron metabolism as potential therapeutic targets.
尽管新冠病毒主要影响呼吸道,但感染个体中肝损伤的报道日益增多。严重急性呼吸综合征冠状病毒2(SARS-CoV-2)诱导肝细胞损伤的机制仍知之甚少。鉴于线粒体功能障碍、氧化应激和程序性细胞死亡在新冠病毒发病机制中的作用,我们使用Huh7.5细胞模型研究了SARS-CoV-2感染对肝细胞的影响。
用SARS-CoV-2的原始武汉株(Wh)或奥密克戎株(BA.5)感染Huh7.5肝细胞。通过逆转录定量聚合酶链反应(RT-qPCR)、核衣壳蛋白检测和感染性颗粒滴定来定量病毒复制。通过线粒体膜电位(ΔΨm)、线粒体活性氧(mROS)生成和线粒体自噬分析来评估线粒体功能。通过共聚焦显微镜和流式细胞术评估脂质代谢和程序性细胞死亡(凋亡、焦亡、铁死亡)。使用化学抑制剂探究特定细胞死亡途径的作用。
两种SARS-CoV-2毒株均能有效感染Huh7.5细胞,且具有不同的复制动力学。感染导致线粒体碎片化、mROS水平升高和脂滴积累。铁死亡被确定为主要的细胞死亡模式,脂质过氧化增加和铁死亡抑制剂1的保护作用证明了这一点。感染后,作为铁死亡标志物和替代性病毒进入受体的血管紧张素转换酶2(ACE2)和转铁蛋白受体1(TfR1)的表达以毒株依赖的方式显著上调。此外,用线粒体靶向抗氧化剂MitoTEMPO清除mROS会损害病毒复制,强调了氧化应激在SARS-CoV-2生命周期中的作用。
SARS-CoV-2破坏肝细胞中的线粒体稳态和脂质代谢,促进铁死亡成为病毒诱导的细胞病理学的主要因素。这些发现表明,铁死亡可能在新冠病毒相关肝损伤中起核心作用,并确定线粒体活性氧和铁代谢为潜在的治疗靶点。