Li Zijie, Yu Ning, Hartel Martin C, Haghniaz Reihaneh, Emaminejad Sam, Zhu Yangzhi
Terasaki Institute for Biomedical Innovation, Los Angeles, CA 91367, USA.
Department of Materials Engineering, University of Southern California, Los Angeles, CA 90089, USA.
Biosensors (Basel). 2025 Aug 1;15(8):498. doi: 10.3390/bios15080498.
Wearable pressure sensors have emerged as vital tools in personalized monitoring, promising transformative advances in patient care and diagnostics. Nevertheless, conventional devices frequently suffer from limited sensitivity, inadequate flexibility, and concerns regarding biocompatibility. Herein, we introduce silk fibroin, a naturally occurring protein extracted from silkworm cocoons, as a promising material platform for next-generation wearable sensors. Owing to its remarkable biocompatibility, mechanical robustness, and structural tunability, silk fibroin serves as an ideal substrate for constructing capacitive pressure sensors tailored to medical applications. We engineered silk-derived capacitive architecture and evaluated its performance in real-time human motion and physiological signal detection. The resulting sensor exhibits a high sensitivity of 18.68 kPa over a broad operational range of 0 to 2.4 kPa, enabling accurate tracking of subtle pressures associated with pulse, respiration, and joint articulation. Under extreme loading conditions, our silk fibroin sensor demonstrated superior stability and accuracy compared to a commercial resistive counterpart (FlexiForce™ A401). These findings establish silk fibroin as a versatile, practical candidate for wearable pressure sensing and pave the way for advanced biocompatible devices in healthcare monitoring.
可穿戴压力传感器已成为个性化监测中的重要工具,有望在患者护理和诊断方面取得变革性进展。然而,传统设备常常存在灵敏度有限、柔韧性不足以及生物相容性方面的问题。在此,我们引入丝素蛋白,一种从蚕茧中提取的天然蛋白质,作为下一代可穿戴传感器的一个有前景的材料平台。由于其卓越的生物相容性、机械坚固性和结构可调性,丝素蛋白是构建适用于医疗应用的电容式压力传感器的理想基底。我们设计了基于丝素蛋白的电容式结构,并评估了其在实时人体运动和生理信号检测中的性能。所得传感器在0至2.4 kPa的宽工作范围内展现出18.68 kPa的高灵敏度,能够精确跟踪与脉搏、呼吸和关节活动相关的细微压力。在极端负载条件下,我们的丝素蛋白传感器相较于商用电阻式传感器(FlexiForce™ A401)表现出卓越的稳定性和准确性。这些发现确立了丝素蛋白作为可穿戴压力传感的通用、实用候选材料的地位,并为医疗监测中的先进生物相容性设备铺平了道路。