Kim Jimi
Department of Food and Nutrition, Changwon National University, Changwon 51140, Republic of Korea.
Diseases. 2025 Jul 28;13(8):239. doi: 10.3390/diseases13080239.
Metabolic syndrome (MetS) is a multifactorial condition involving central obesity, dyslipidemia, hypertension, and impaired glucose metabolism, significantly increasing the risk of type 2 diabetes and cardiovascular disease.
Given the clinical heterogeneity of MetS, this study aimed to identify distinct metabolic phenotypes, referred to as metabotypes, using validated biomarkers and to examine their association with MetS.
A total of 1245 Korean adults aged 19-79 years were selected from the 2016-2023 Korea National Health and Nutrition Examination Survey. Metabotype risk clusters were derived using k-means clustering based on five biomarkers: body mass index (BMI), uric acid, fasting blood glucose (FBG), high-density lipoprotein cholesterol (HDLc), and non-HDL cholesterol (non-HDLc). Multivariable logistic regression was used to assess associations with MetS.
Three distinct metabotype risk clusters (low, intermediate, and high risk) were identified. The high-risk cluster exhibited significantly worse metabolic profiles, including elevated BMI, FBG, HbA1c, triglyceride, and reduced HDLc. The prevalence of MetS increased progressively across metabotype risk clusters (OR: 5.46, 95% CI: 2.89-10.30, < 0.001). In sex-stratified analyses, the high-risk cluster was strongly associated with MetS in both men (OR: 9.22, 95% CI: 3.49-24.36, < 0.001) and women (OR: 3.70, 95% CI: 1.56-8.75, = 0.003), with notable sex-specific differences in lipid profiles, particularly in HDLc.
These findings support the utility of metabotyping using routine biomarkers as a tool for early identification of high-risk individuals and the development of personalized prevention strategies in clinical and public health settings.
代谢综合征(MetS)是一种多因素疾病,涉及中心性肥胖、血脂异常、高血压和糖代谢受损,显著增加了2型糖尿病和心血管疾病的风险。
鉴于代谢综合征的临床异质性,本研究旨在使用经过验证的生物标志物识别不同的代谢表型,即代谢型,并研究它们与代谢综合征的关联。
从2016 - 2023年韩国国民健康与营养检查调查中选取了1245名年龄在19 - 79岁的韩国成年人。基于体重指数(BMI)、尿酸、空腹血糖(FBG)、高密度脂蛋白胆固醇(HDLc)和非高密度脂蛋白胆固醇(non - HDLc)这五种生物标志物,采用k均值聚类法得出代谢型风险聚类。使用多变量逻辑回归评估与代谢综合征的关联。
识别出三个不同的代谢型风险聚类(低、中、高风险)。高风险聚类表现出明显更差的代谢特征,包括BMI、FBG、糖化血红蛋白(HbA1c)、甘油三酯升高以及HDLc降低。代谢综合征的患病率在代谢型风险聚类中逐渐增加(比值比:5.46,95%置信区间:2.89 - 10.30,P < 0.001)。在按性别分层的分析中,高风险聚类在男性(比值比:9.22,95%置信区间:3.49 - 24.36,P < 0.001)和女性(比值比:3.70,95%置信区间:1.56 - 8.75,P = 0.003)中均与代谢综合征密切相关,在血脂谱方面存在显著的性别差异,尤其是在HDLc方面。
这些发现支持了使用常规生物标志物进行代谢型分析作为早期识别高危个体以及在临床和公共卫生环境中制定个性化预防策略的工具的实用性。