Mohsin Nadia A, Abdulameer Mohammed H
Department of Computer Science, Faculty of Computer Science and Mathematics, University of Kufa, Najaf 54001, Iraq.
Department of Computer Science, Faculty of Education for Women, University of Kufa, Najaf 54001, Iraq.
J Imaging. 2025 Aug 5;11(8):260. doi: 10.3390/jimaging11080260.
Accurate detection of Alzheimer's disease (AD) is critical yet challenging for early medical intervention. Deep learning methods, especially convolutional neural networks (CNNs), have shown promising potential for improving diagnostic accuracy using magnetic resonance imaging (MRI). This study aims to identify the most informative combination of MRI slice orientation and anatomical location for AD classification. We propose an automated framework that first selects the most relevant slices using a feature entropy-based method applied to activation maps from a pretrained CNN model. For classification, we employ a lightweight CNN architecture based on depthwise separable convolutions to efficiently analyze the selected 2D MRI slices extracted from preprocessed 3D brain scans. To further interpret model behavior, an attention mechanism is integrated to analyze which feature level contributes the most to the classification process. The model is evaluated on three binary tasks: AD vs. mild cognitive impairment (MCI), AD vs. cognitively normal (CN), and MCI vs. CN. The experimental results show the highest accuracy (97.4%) in distinguishing AD from CN when utilizing the selected slices from the ninth axial segment, followed by the tenth segment of coronal and sagittal orientations. These findings demonstrate the significance of slice location and orientation in MRI-based AD diagnosis and highlight the potential of lightweight CNNs for clinical use.
准确检测阿尔茨海默病(AD)对于早期医学干预至关重要,但也具有挑战性。深度学习方法,尤其是卷积神经网络(CNN),在利用磁共振成像(MRI)提高诊断准确性方面已显示出有前景的潜力。本研究旨在确定用于AD分类的MRI切片方向和解剖位置的最具信息性的组合。我们提出了一个自动化框架,该框架首先使用基于特征熵的方法从预训练的CNN模型的激活图中选择最相关的切片。对于分类,我们采用基于深度可分离卷积的轻量级CNN架构,以有效地分析从预处理的3D脑部扫描中提取的选定2D MRI切片。为了进一步解释模型行为,集成了注意力机制来分析哪个特征级别对分类过程贡献最大。该模型在三个二元任务上进行评估:AD与轻度认知障碍(MCI)、AD与认知正常(CN)以及MCI与CN。实验结果表明,当使用来自第九个轴位段的选定切片时,在区分AD与CN方面具有最高准确率(97.4%),其次是冠状位和矢状位的第十个段。这些发现证明了切片位置和方向在基于MRI的AD诊断中的重要性,并突出了轻量级CNN在临床应用中的潜力。