Suppr超能文献

深度学习模型在医学治疗领域的研究综述。

A survey of deep learning models in medical therapeutic areas.

机构信息

CEIEC, Research Institute, Universidad Francisco de Vitoria, Ctra. M-515 Pozuelo-Majadahonda km 1800, 28223, Pozuelo de Alarcón, Spain.

Faculty of Medicine, Research Institute, Universidad Francisco de Vitoria, Ctra. M-515 Pozuelo-Majadahonda km 1800, 28223, Pozuelo de Alarcón, Spain.

出版信息

Artif Intell Med. 2021 Feb;112:102020. doi: 10.1016/j.artmed.2021.102020. Epub 2021 Jan 15.

Abstract

Artificial intelligence is a broad field that comprises a wide range of techniques, where deep learning is presently the one with the most impact. Moreover, the medical field is an area where data both complex and massive and the importance of the decisions made by doctors make it one of the fields in which deep learning techniques can have the greatest impact. A systematic review following the Cochrane recommendations with a multidisciplinary team comprised of physicians, research methodologists and computer scientists has been conducted. This survey aims to identify the main therapeutic areas and the deep learning models used for diagnosis and treatment tasks. The most relevant databases included were MedLine, Embase, Cochrane Central, Astrophysics Data System, Europe PubMed Central, Web of Science and Science Direct. An inclusion and exclusion criteria were defined and applied in the first and second peer review screening. A set of quality criteria was developed to select the papers obtained after the second screening. Finally, 126 studies from the initial 3493 papers were selected and 64 were described. Results show that the number of publications on deep learning in medicine is increasing every year. Also, convolutional neural networks are the most widely used models and the most developed area is oncology where they are used mainly for image analysis.

摘要

人工智能是一个广泛的领域,包括多种技术,其中深度学习是目前影响最大的技术之一。此外,医学领域是一个数据既复杂又庞大,医生决策至关重要的领域,深度学习技术可以在该领域产生最大的影响。我们成立了一个由医生、研究方法学家和计算机科学家组成的多学科团队,按照 Cochrane 建议进行了系统综述。这项调查旨在确定主要的治疗领域和用于诊断和治疗任务的深度学习模型。纳入的最相关数据库包括 MedLine、Embase、Cochrane 中央、天体物理数据系统、欧洲 PubMed 中心、Web of Science 和 Science Direct。在第一和第二轮同行评审筛选中定义并应用了纳入和排除标准。制定了一套质量标准来选择第二轮筛选后获得的论文。最后,从最初的 3493 篇论文中选择了 126 篇进行描述。结果表明,医学领域深度学习的出版物数量每年都在增加。此外,卷积神经网络是使用最广泛的模型,肿瘤学是开发最完善的领域,主要用于图像分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验