Suppr超能文献

马兜铃酸I诱导肝细胞癌的机制探索:来自网络毒理学、机器学习、分子对接和分子动力学模拟的见解

Mechanistic Exploration of Aristolochic Acid I-Induced Hepatocellular Carcinoma: Insights from Network Toxicology, Machine Learning, Molecular Docking, and Molecular Dynamics Simulation.

作者信息

Tu Tiantaixi, Zheng Tongtong, Lin Hangqi, Cheng Peifeng, Yang Ye, Liu Bolin, Ying Xinwang, Xie Qingfeng

机构信息

Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325035, China.

Renji College, Wenzhou Medical University, Wenzhou 325035, China.

出版信息

Toxins (Basel). 2025 Aug 5;17(8):390. doi: 10.3390/toxins17080390.

Abstract

This study explores how aristolochic acid I (AAI) drives hepatocellular carcinoma (HCC). We first employ network toxicology and machine learning to map the key molecular target genes. Next, our research utilizes molecular docking to evaluate how AAI binds to these targets, and finally confirms the stability and dynamics of the resulting complexes through molecular dynamics simulations. We identified 193 overlapping target genes between AAI and HCC through databases such as PubChem, OMIM, and ChEMBL. Machine learning algorithms (SVM-RFE, random forest, and LASSO regression) were employed to screen 11 core genes. LASSO serves as a rapid dimension-reduction tool, SVM-RFE recursively eliminates the features with the smallest weights, and Random Forest achieves ensemble learning through decision trees. Protein-protein interaction networks were constructed using Cytoscape 3.9.1, and key genes were validated through GO and KEGG enrichment analyses, an immune infiltration analysis, a drug sensitivity analysis, and a survival analysis. Molecular-docking experiments showed that AAI binds to each of the core targets with a binding affinity stronger than -5 kcal mol, and subsequent molecular dynamics simulations verified that these complexes remain stable over time. This study determined the potential molecular mechanisms underlying AAI-induced HCC and identified key genes (CYP1A2, ESR1, and AURKA) as potential therapeutic targets, providing valuable insights for developing targeted strategies to mitigate the health risks associated with AAI exposure.

摘要

本研究探讨马兜铃酸 I(AAI)如何驱动肝细胞癌(HCC)。我们首先运用网络毒理学和机器学习来映射关键分子靶基因。接下来,我们的研究利用分子对接来评估 AAI 与这些靶标的结合方式,最后通过分子动力学模拟确认所得复合物的稳定性和动力学。我们通过 PubChem、OMIM 和 ChEMBL 等数据库确定了 AAI 和 HCC 之间的 193 个重叠靶基因。运用机器学习算法(支持向量机递归特征消除法、随机森林和套索回归)筛选出 11 个核心基因。套索回归用作快速降维工具,支持向量机递归特征消除法递归地消除权重最小的特征,随机森林通过决策树实现集成学习。使用 Cytoscape 3.9.1 构建蛋白质 - 蛋白质相互作用网络,并通过基因本体论(GO)和京都基因与基因组百科全书(KEGG)富集分析、免疫浸润分析、药物敏感性分析和生存分析对关键基因进行验证。分子对接实验表明,AAI 与每个核心靶标的结合亲和力均强于 -5 千卡/摩尔,随后的分子动力学模拟证实这些复合物随时间推移保持稳定。本研究确定了 AAI 诱导 HCC 的潜在分子机制,并确定了关键基因(细胞色素 P450 1A2、雌激素受体 1 和极光激酶 A)作为潜在治疗靶点,为制定有针对性的策略以减轻与 AAI 暴露相关的健康风险提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/facf/12390577/f9fdb3764396/toxins-17-00390-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验