Suppr超能文献

通过精准育种实现花生抗黄曲霉毒素的新兴策略

Emerging Strategies for Aflatoxin Resistance in Peanuts via Precision Breeding.

作者信息

Khadgi Archana, Lekkala Saikrisha, Verma Pankaj K, Puppala Naveen, Janga Madhusudhana R

机构信息

Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Department of Plant and Soil Sciences, Texas Tech University, Lubbock, TX 79403, USA.

Department of Plant and Environmental Sciences, New Mexico State University, Clovis, NM 88101, USA.

出版信息

Toxins (Basel). 2025 Aug 6;17(8):394. doi: 10.3390/toxins17080394.

Abstract

Aflatoxin contamination, primarily caused by , poses a significant threat to peanut ( L.) production, food safety, and global trade. Despite extensive efforts, breeding for durable resistance remains difficult due to the polygenic and environmentally sensitive nature of resistance. Although germplasm such as J11 have shown partial resistance, none of the identified lines demonstrated stable or comprehensive protection across diverse environments. Resistance involves physical barriers, biochemical defenses, and suppression of toxin biosynthesis. However, these traits typically exhibit modest effects and are strongly influenced by genotype-environment interactions. A paradigm shift is underway with increasing focus on host susceptibility (S) genes, native peanut genes exploited by to facilitate colonization or toxin production. Recent studies have identified promising S gene candidates such as , which suppress salicylic acid-mediated defense, and , a negative regulator of ABA signaling. Disrupting such genes through gene editing holds potential for broad-spectrum resistance. To advance resistance breeding, an integrated pipeline is essential. This includes phenotyping diverse germplasm under stress conditions, mapping resistance loci using QTL and GWAS, and applying multi-omics platforms to identify candidate genes. Functional validation using CRISPR/Cas9, Cas12a, base editors, and prime editing allows precise gene targeting. Validated genes can be introgressed into elite lines through breeding by marker-assisted and genomic selection, accelerating the breeding of aflatoxin-resistant peanut varieties. This review highlights recent advances in peanut aflatoxin resistance research, emphasizing susceptibility gene targeting and genome editing. Integrating conventional breeding with multi-omics and precision biotechnology offers a promising path toward developing aflatoxin-free peanut cultivars.

摘要

黄曲霉毒素污染主要由[未提及具体原因]引起,对花生(Arachis hypogaea L.)生产、食品安全和全球贸易构成重大威胁。尽管付出了巨大努力,但由于抗性的多基因和环境敏感特性,培育持久抗性仍然困难重重。虽然像J11这样的种质已表现出部分抗性,但在不同环境中,尚未鉴定出的品系能表现出稳定或全面的抗性。抗性涉及物理屏障、生化防御以及毒素生物合成的抑制。然而,这些性状通常作用有限,且受基因型 - 环境相互作用的强烈影响。随着对宿主易感性(S)基因的关注度不断提高,一种范式转变正在发生,这些基因是被[未提及具体对象]利用以促进定殖或毒素产生的花生天然基因。最近的研究已经确定了有前景的S基因候选者,例如[未提及具体基因],它抑制水杨酸介导的防御,以及[未提及具体基因],一种脱落酸信号的负调节因子。通过基因编辑破坏这些基因有望实现广谱抗性。为了推进抗性育种,一个综合流程至关重要。这包括在胁迫条件下对不同种质进行表型分析,使用QTL和GWAS定位抗性位点,以及应用多组学平台来鉴定候选基因。使用CRISPR/Cas9、Cas12a、碱基编辑器和引导编辑进行功能验证可实现精确的基因靶向。通过标记辅助和基因组选择育种,可将经过验证的基因导入优良品系,加速抗黄曲霉毒素花生品种的培育。本综述强调了花生黄曲霉毒素抗性研究的最新进展,着重于易感性基因靶向和基因组编辑。将传统育种与多组学和精准生物技术相结合,为培育无黄曲霉毒素花生品种提供了一条有前景的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a81/12390446/16bcb8054e02/toxins-17-00394-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验