Zatloukal Jakub, Viry Mathieu, Mizera Aleš, Stoklásek Pavel, Miškařík Lukáš, Bednařík Martin
Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 5669, 760 01 Zlin, Czech Republic.
Prusa Development a.s., 170 00 Praha, Czech Republic.
Materials (Basel). 2025 Aug 16;18(16):3846. doi: 10.3390/ma18163846.
Multimaterial 3D printing is transforming the landscape of additive manufacturing, enabling the production of advanced, functional parts with tailored properties for sectors like automotive, aerospace, and engineering. However, achieving strong interlayer adhesion between different polymers remains a significant challenge, limiting the mechanical reliability. This study investigates adhesion properties of widely used materials-polycarbonate (PC), acrylonitrile styrene acrylate (ASA), polylactic acid (PLA), and polyethylene terephthalate glycol (PETG)-and enhances mechanical performance of structural joints through optimized interlayer bonding techniques. Using the Material Extrusion (MEX) method, tensile testing was employed to evaluate the mechanical strength of joints by co-depositing and bonding material layers during the printing process. The results demonstrate that specific material combinations and joint design strategies, particularly increasing the interfacial contact area and applying interlayer bonding pressure, significantly enhance tensile strength. For instance, the strength of PC/PTEG composite joints increased from 15.2 MPa (standard joint) to 29.9 MPa (interlayer bonding strategy), nearly doubling the bond strength. These findings provide valuable insights into the behavior of multimaterial joints and propose practical approaches for improving the durability and functionality of 3D-printed structures. This research lays the groundwork for advancing multimaterial additive manufacturing, with implications for high-performance applications in engineering, aerospace, and beyond.
多材料3D打印正在改变增材制造的格局,能够为汽车、航空航天和工程等领域生产具有定制特性的先进功能性部件。然而,在不同聚合物之间实现强大的层间附着力仍然是一项重大挑战,限制了机械可靠性。本研究调查了广泛使用的材料——聚碳酸酯(PC)、丙烯腈苯乙烯丙烯酸酯(ASA)、聚乳酸(PLA)和聚对苯二甲酸乙二醇酯(PETG)的附着力,并通过优化层间粘结技术提高结构接头的机械性能。采用材料挤出(MEX)方法,在打印过程中通过共沉积和粘结材料层,使用拉伸试验来评估接头的机械强度。结果表明,特定的材料组合和接头设计策略,特别是增加界面接触面积和施加层间粘结压力,可显著提高拉伸强度。例如,PC/PTEG复合接头的强度从15.2MPa(标准接头)提高到29.9MPa(层间粘结策略),粘结强度几乎翻倍。这些发现为多材料接头的行为提供了有价值的见解,并提出了提高3D打印结构耐久性和功能性的实用方法。本研究为推进多材料增材制造奠定了基础,对工程、航空航天及其他领域的高性能应用具有重要意义。