Mihailova Irena, Dimitrova Petya, Avdeev Georgi, Ivanova Radostina, Georgiev Hristo, Nedkova-Shtipska Milena, Teodosieva Ralitsa, Radev Lachezar
Department of Silicate Technology, University of Chemical Technology and Metallurgy, 8 Kl. Ohridski Blvd., 1797 Sofia, Bulgaria.
Department of Immunology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
Materials (Basel). 2025 Aug 19;18(16):3887. doi: 10.3390/ma18163887.
The CaO-SiO-PO system is one of the main systems studied aiming for the synthesis of new bioactive materials for bone regeneration. The interest in materials containing calcium-phosphate-silicate phases is determined by their biocompatibility, biodegradability, bioactivity, and osseointegration. The object of the present study is the synthesis by the sol-gel method of biocompatible glass-ceramics in the CaSiO-Ca(PO) subsystem with the composition 6CaSiO·Ca(PO) = Ca(PO)(SiO). The phase-structural evolution of the samples was monitored using X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and surface area analysis. A powder (20-30 µm) glass-ceramic material containing fine crystalline aggregates of dicalcium silicate and plates of silicon-substituted hydroxyapatite was obtained after heat treatment at 700 °C. After heat treatment at 1200 °C, Ca(PO)(SiO), silicocarnotite Ca(PO)(SiO), and pseudowollastonite CaSiO were identified by XRD, and the particle size varied between 20 and 70 µm. The compact glass-ceramic obtained at 1400 °C contained CaSiO-Ca(PO) solid solutions with an α-CaSiO structure as a main crystalline phase. SEM showed the specific morphology of the crystalline phases and illustrated the trend of increasing particle size depending on the synthesis temperature. Effects of the glass-ceramic materials on cell viability of HL-60-derived osteoclast-like cells and on the expression of apoptotic and osteoclast-driven marker suggested that all materials at low concentrations, above 1 µg mL, are biocompatible, and S-1400 might have a potential application as a scaffold material for bone regeneration.
CaO-SiO-PO体系是旨在合成用于骨再生的新型生物活性材料的主要研究体系之一。对含磷酸钙-硅酸盐相材料的关注取决于它们的生物相容性、生物降解性、生物活性和骨整合性。本研究的对象是通过溶胶-凝胶法在CaSiO-Ca(PO)子体系中合成具有6CaSiO·Ca(PO) = Ca(PO)(SiO)组成的生物相容性玻璃陶瓷。使用X射线衍射分析(XRD)、傅里叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)、能量色散光谱(EDS)和表面积分析来监测样品的相结构演变。在700℃热处理后,获得了一种粉末状(20-30 µm)玻璃陶瓷材料,其包含硅酸二钙的细晶聚集体和硅取代羟基磷灰石的片状物。在1200℃热处理后,通过XRD鉴定出Ca(PO)(SiO)、硅钙铀云母Ca(PO)(SiO)和假硅灰石CaSiO,粒径在20至70 µm之间变化。在1400℃获得的致密玻璃陶瓷包含以α-CaSiO结构为主晶相的CaSiO-Ca(PO)固溶体。SEM显示了晶相的特定形态,并说明了粒径随合成温度增加的趋势。玻璃陶瓷材料对HL-60衍生的破骨细胞样细胞的细胞活力以及对凋亡和破骨细胞驱动标记物表达的影响表明,所有浓度高于1 µg mL的材料在低浓度下都是生物相容的,并且S-1400可能具有作为骨再生支架材料的潜在应用。