Suppr超能文献

24小时运动行为与幼儿期生长、运动及社会情感发展之间的横断面和纵向关联。

Cross-sectional and longitudinal associations between 24-hour movement behaviors and growth, motor, and social-emotional development in early childhood.

作者信息

Arts Jelle, Altenburg Teatske M, Lettink Annelinde, Verhoeff Arnoud P, Gubbels Jessica S, Chinapaw Mai J M

机构信息

Amsterdam UMC location Vrije Universiteit Amsterdam, Public and Occupational Health, De Boelelaan 1117, Amsterdam, The Netherlands.

Amsterdam Public Health, Health Behaviors & Chronic Diseases, Amsterdam, The Netherlands.

出版信息

J Act Sedentary Sleep Behav. 2025 Aug 28;4(1):14. doi: 10.1186/s44167-025-00085-9.

Abstract

BACKGROUND

To enhance evidence on optimal 24-hour movement behaviors (physical activity, sedentary behavior, and sleep) in early childhood, this study investigated cross-sectional and longitudinal associations of the composition of these behaviors with social-emotional development, gross motor development and growth in 0-4-year-olds.

METHODS

Data were collected at two timepoints (baseline and 9 months later) in two sub-cohorts from the My Little Moves study: one examining social-emotional development (sub-cohort-SE) and one gross motor development and growth (sub-cohort-GM). Children's time spent in 24-hour movement behaviors was assessed via parent-report using the My Little Moves app. Isometric log-ratios were calculated to represent 24-hour movement behavior composition. Social-emotional and gross motor development were assessed using the Bayley Scales of Infant and Toddler Development-III, with both total raw and norm-referenced scaled scores. Children's weight and height were measured to calculate BMI z-scores. Linear regression and mixed-model analyses examined cross-sectional and longitudinal associations, with significant results further explored using compositional isotemporal reallocation analysis.

RESULTS

Sub-cohort-SE provided data from 101 children at timepoint 1 (age 20.6 ± 12.5 months) and 62 children at timepoint 2 (age 25.7 ± 9.8 months). Sub-cohort-GM provided data from 60 children at timepoint 1 (age 20.4 ± 10.8 months) and 46 children at timepoint 2 (age 27.6 ± 9.6 months). The composition of 24-hour movement behaviors was significantly associated with raw gross motor development scores in both cross-sectional (p < .001, R²Δ = 0.042) and longitudinal (p < .001, R²Δ = 0.033) analyses. The association with BMI z-scores was significant only in the cross-sectional analysis (p = .015, R²Δ = 0.130). Reallocating 10 min from sedentary behavior to physical activity or sleep increased raw gross motor development scores by 0.22 (95% CI [0.11, 0.33]), and 0.27 (95% CI [0.08, 0.45]). Reallocating 10 min from sedentary behavior to sleep increased BMI z-scores by 0.04 (95% CI [0.01, 0.06]).

CONCLUSIONS

The composition of 24-hour movement behaviors was significantly associated with BMI z-scores and gross motor development, but not social-emotional development in children aged 0-4 years. Evidence on the optimal distribution of movement behaviors remains unclear and needs further examination in larger longitudinal studies.

摘要

背景

为了增加关于幼儿最佳24小时运动行为(身体活动、久坐行为和睡眠)的证据,本研究调查了这些行为的构成与0至4岁儿童社会情感发展、大肌肉运动发展和生长之间的横断面和纵向关联。

方法

在“我的小运动”研究的两个子队列中的两个时间点(基线和9个月后)收集数据:一个考察社会情感发展(子队列-SE),另一个考察大肌肉运动发展和生长(子队列-GM)。通过家长使用“我的小运动”应用程序报告来评估儿童在24小时运动行为上花费的时间。计算等距对数比来表示24小时运动行为的构成。使用贝利婴幼儿发展量表第三版评估社会情感和大肌肉运动发展,包括原始总分和常模参照量表分数。测量儿童的体重和身高以计算BMI z评分。线性回归和混合模型分析考察横断面和纵向关联,对显著结果使用成分等时重新分配分析进一步探究。

结果

子队列-SE在时间点1提供了101名儿童的数据(年龄20.6±12.5个月),在时间点2提供了62名儿童的数据(年龄25.7±9.8个月)。子队列-GM在时间点1提供了60名儿童的数据(年龄20.4±10.8个月),在时间点2提供了46名儿童的数据(年龄27.6±9.6个月)。在横断面(p<.001,R²Δ = 0.042)和纵向(p<.001,R²Δ = 0.033)分析中,24小时运动行为的构成与原始大肌肉运动发展分数均显著相关。与BMI z评分的关联仅在横断面分析中显著(p = 0.015,R²Δ = 0.130)。将10分钟久坐行为重新分配为身体活动或睡眠可使原始大肌肉运动发展分数分别提高0.22(95%CI[0.11, 0.33])和0.27(95%CI[0.08, 0.45])。将10分钟久坐行为重新分配为睡眠可使BMI z评分提高0.04(95%CI[0.01, 0.06])。

结论

24小时运动行为的构成与0至4岁儿童的BMI z评分和大肌肉运动发展显著相关,但与社会情感发展无关。关于运动行为最佳分布的证据仍不明确,需要在更大规模的纵向研究中进一步考察。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd85/12392550/7c7c88c239eb/44167_2025_85_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验