Suppr超能文献

通过胶体原子层沉积在 CsPbBr 量子点上制备厚 ZnS 壳层以增强光致发光和稳定性

Thick ZnS Shells on CsPbBr Quantum Dots by Colloidal-Atomic Layer Deposition for Enhanced Photoluminescence and Stability.

作者信息

Teku Justice A, Taylor Derrick A, Lee Jong-Soo

机构信息

Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.

出版信息

JACS Au. 2025 Aug 1;5(8):4036-4043. doi: 10.1021/jacsau.5c00651. eCollection 2025 Aug 25.

Abstract

The colloidal-atomic layer deposition (c-ALD) method is employed to grow a zinc sulfide (ZnS) shell on CsPbBr perovskite quantum dots (PeQDs) to form CsPbBr/ZnS core/shell heterostructures to address the intrinsic stability challenges of PeQDs. The c-ALD process offers layer by layer control over the thickness of the shell, enabling uniform and conformal encapsulation, which significantly passivates the surface defects and enhances the optical properties of the PeQDs. This approach significantly improves photoluminescence quantum yield, increases environmental stability, and prolongs the average radiative lifetime of the CsPbBr PeQDs. The structural and spectroscopic analysis confirms the formation of a thick and uniform ZnS shell. Furthermore, the resulting core/shell PeQDs exhibit exceptional thermal, photostability, and aqueous durability, surpassing the limitations of pristine CsPbBr PeQDs. This work opens new opportunities for the c-ALD method to be integrated into perovskite core/shell heterostructures for advancing optoelectronic technologies.

摘要

采用胶体原子层沉积(c-ALD)方法在CsPbBr钙钛矿量子点(PeQDs)上生长硫化锌(ZnS)壳层,以形成CsPbBr/ZnS核壳异质结构,解决PeQDs的固有稳定性挑战。c-ALD工艺可逐层控制壳层厚度,实现均匀且保形的封装,这显著钝化了表面缺陷并增强了PeQDs的光学性能。这种方法显著提高了光致发光量子产率,增强了环境稳定性,并延长了CsPbBr PeQDs的平均辐射寿命。结构和光谱分析证实形成了厚且均匀的ZnS壳层。此外,所得的核壳PeQDs表现出卓越的热稳定性、光稳定性和在水中的耐久性,超越了原始CsPbBr PeQDs的局限性。这项工作为将c-ALD方法集成到钙钛矿核壳异质结构中以推进光电子技术开辟了新机遇。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a69c/12381700/8f0e5de0fcbc/au5c00651_0005.jpg

相似文献

1
Thick ZnS Shells on CsPbBr Quantum Dots by Colloidal-Atomic Layer Deposition for Enhanced Photoluminescence and Stability.
JACS Au. 2025 Aug 1;5(8):4036-4043. doi: 10.1021/jacsau.5c00651. eCollection 2025 Aug 25.
2
Inhibited thermal degradation of CsPbBr perovskite quantum dots by dual-Shell engineering towards stable LEDs.
J Colloid Interface Sci. 2025 Dec 15;700(Pt 1):138350. doi: 10.1016/j.jcis.2025.138350. Epub 2025 Jul 3.
5
c-ALD-Grown Metal Oxide Shell Enables Distance-Independent Triplet Energy Transfer from Quantum Dots to Molecular Dyes.
J Am Chem Soc. 2025 Aug 27;147(34):31409-31416. doi: 10.1021/jacs.5c11645. Epub 2025 Aug 14.
6
Achieving long-term water stability and strong exciton-photon coupling in CsPbBr quantum dots via MOF encapsulation.
Nanophotonics. 2025 Jun 18;14(14):2397-2409. doi: 10.1515/nanoph-2025-0059. eCollection 2025 Jul.
7
Direct thermal atomic layer deposition of high- dielectrics on monolayer MoS: nucleation and growth.
Nanoscale. 2025 Jun 26;17(25):15436-15447. doi: 10.1039/d5nr01144b.
9
DNA-Engineered CsPbBr Superlattices with Enhanced Electronic Coupling for High-Performance Electrochemiluminescence Biosensing.
ACS Sens. 2025 Aug 22;10(8):6231-6240. doi: 10.1021/acssensors.5c02005. Epub 2025 Jul 30.
10
Solvent-Mediated Synthesis of Small-Sized Perovskite Quantum Dots for a Color-Enhanced Micro-LED Display.
ACS Nano. 2025 Jun 24;19(24):22190-22200. doi: 10.1021/acsnano.5c03449. Epub 2025 Jun 12.

本文引用的文献

1
Nanocrystal Heterostructures Based on Halide Perovskites and Metal Sulfides.
J Am Chem Soc. 2024 Oct 9;146(40):27571-27582. doi: 10.1021/jacs.4c08565. Epub 2024 Sep 30.
2
Red-Emitting CsPbI/ZnSe Colloidal Nanoheterostructures with Enhanced Optical Properties and Stability.
Small. 2024 Oct;20(40):e2400745. doi: 10.1002/smll.202400745. Epub 2024 May 28.
3
4
Long live(d) CsPbBr superlattices: colloidal atomic layer deposition for structural stability.
Chem Sci. 2024 Feb 19;15(12):4510-4518. doi: 10.1039/d3sc06662b. eCollection 2024 Mar 20.
5
Surface and Interface Engineering for Highly Stable CsPbBr/ZnS Core/Shell Nanocrystals.
Inorg Chem. 2024 Jan 29;63(4):2247-2256. doi: 10.1021/acs.inorgchem.3c04210. Epub 2024 Jan 17.
6
Perovskite Nanocrystals Protected by Hermetically Sealing for Highly Bright and Stable Deep-Blue Light-Emitting Diodes.
Adv Sci (Weinh). 2023 Aug;10(23):e2302906. doi: 10.1002/advs.202302906. Epub 2023 Jun 4.
7
Colloidal-ALD-Grown Metal Oxide Shells Enable the Synthesis of Photoactive Ligand/Nanocrystal Composite Materials.
J Am Chem Soc. 2023 Apr 12;145(14):8189-8197. doi: 10.1021/jacs.3c01439. Epub 2023 Mar 30.
8
Epitaxial CsPbBr /CdS Janus Nanocrystal Heterostructures for Efficient Charge Separation.
Adv Sci (Weinh). 2023 May;10(13):e2206560. doi: 10.1002/advs.202206560. Epub 2023 Feb 25.
10
CsPbBr-CdS heterostructure: stabilizing perovskite nanocrystals for photocatalysis.
Chem Sci. 2021 Oct 22;12(44):14815-14825. doi: 10.1039/d1sc04305f. eCollection 2021 Nov 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验