Teku Justice A, Taylor Derrick A, Lee Jong-Soo
Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
JACS Au. 2025 Aug 1;5(8):4036-4043. doi: 10.1021/jacsau.5c00651. eCollection 2025 Aug 25.
The colloidal-atomic layer deposition (c-ALD) method is employed to grow a zinc sulfide (ZnS) shell on CsPbBr perovskite quantum dots (PeQDs) to form CsPbBr/ZnS core/shell heterostructures to address the intrinsic stability challenges of PeQDs. The c-ALD process offers layer by layer control over the thickness of the shell, enabling uniform and conformal encapsulation, which significantly passivates the surface defects and enhances the optical properties of the PeQDs. This approach significantly improves photoluminescence quantum yield, increases environmental stability, and prolongs the average radiative lifetime of the CsPbBr PeQDs. The structural and spectroscopic analysis confirms the formation of a thick and uniform ZnS shell. Furthermore, the resulting core/shell PeQDs exhibit exceptional thermal, photostability, and aqueous durability, surpassing the limitations of pristine CsPbBr PeQDs. This work opens new opportunities for the c-ALD method to be integrated into perovskite core/shell heterostructures for advancing optoelectronic technologies.
采用胶体原子层沉积(c-ALD)方法在CsPbBr钙钛矿量子点(PeQDs)上生长硫化锌(ZnS)壳层,以形成CsPbBr/ZnS核壳异质结构,解决PeQDs的固有稳定性挑战。c-ALD工艺可逐层控制壳层厚度,实现均匀且保形的封装,这显著钝化了表面缺陷并增强了PeQDs的光学性能。这种方法显著提高了光致发光量子产率,增强了环境稳定性,并延长了CsPbBr PeQDs的平均辐射寿命。结构和光谱分析证实形成了厚且均匀的ZnS壳层。此外,所得的核壳PeQDs表现出卓越的热稳定性、光稳定性和在水中的耐久性,超越了原始CsPbBr PeQDs的局限性。这项工作为将c-ALD方法集成到钙钛矿核壳异质结构中以推进光电子技术开辟了新机遇。