Liu Jiahui, Ye Yuliang, Yang Zunxian
College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China.
National & Local United Engineering Laboratory of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, China.
Materials (Basel). 2025 Jun 18;18(12):2879. doi: 10.3390/ma18122879.
Artificial photoelectric synapses exhibit great potential for overcoming the Von Neumann bottleneck in computational systems. All-inorganic halide perovskites hold considerable promise in photoelectric synapses due to their superior photon-harvesting efficiency. In this study, a novel wavy-structured CsPbBr/ZnO hybrid film was realized by depositing zinc oxide (ZnO) onto island-like CsPbBr film via atomic layer deposition (ALD) at 70 °C. Due to the capability of ALD to grow high-quality films over small surface areas, dense and thin ZnO film filled the gaps between the island-shaped CsPbBr grains, thereby enabling reduced light-absorption losses and efficient charge transport between the CsPbBr light absorber and the ZnO electron-transport layer. This ZnO/island-like CsPbBr hybrid synaptic transistor could operate at a drain-source voltage of 1.0 V and a gate-source voltage of 0 V triggered by green light (500 nm) pulses with low light intensities of 0.035 mW/cm. The device exhibited a quiescent current of ~0.5 nA. Notably, after patterning, it achieved a significantly reduced off-state current of 10 A and decreased the quiescent current to 0.02 nA. In addition, this transistor was able to mimic fundamental synaptic behaviors, including excitatory postsynaptic currents (EPSCs), paired-pulse facilitation (PPF), short-term to long-term plasticity (STP to LTP) transitions, and learning-experience behaviors. This straightforward strategy demonstrates the possibility of utilizing neuromorphic synaptic device applications under low voltage and weak light conditions.
人工光电突触在克服计算系统中的冯·诺依曼瓶颈方面展现出巨大潜力。全无机卤化物钙钛矿因其卓越的光子捕获效率,在光电突触中极具前景。在本研究中,通过在70°C下利用原子层沉积(ALD)将氧化锌(ZnO)沉积到岛状CsPbBr薄膜上,实现了一种新型的波浪结构CsPbBr/ZnO混合薄膜。由于ALD能够在小表面积上生长高质量薄膜,致密且薄的ZnO薄膜填充了岛状CsPbBr晶粒之间的间隙,从而减少了光吸收损失,并实现了CsPbBr光吸收体与ZnO电子传输层之间的高效电荷传输。这种ZnO/岛状CsPbBr混合突触晶体管能够在1.0 V的漏源电压和0 V的栅源电压下,由低光强为0.035 mW/cm²的绿光(500 nm)脉冲触发工作。该器件的静态电流约为0.5 nA。值得注意的是,经过图案化后,它实现了显著降低的关态电流至10 A,并将静态电流降低至0.02 nA。此外,该晶体管能够模拟基本的突触行为,包括兴奋性突触后电流(EPSCs)、双脉冲易化(PPF)、短期到长期可塑性(STP到LTP)转变以及学习经验行为。这种直接的策略证明了在低电压和弱光条件下利用神经形态突触器件应用的可能性。