Suppr超能文献

一种用于使用噪声单导联心电图检测和预测结构性心脏病的集成深度学习算法的开发与多中心验证。

Development and multinational validation of an ensemble deep learning algorithm for detecting and predicting structural heart disease using noisy single-lead electrocardiograms.

作者信息

Aminorroaya Arya, Dhingra Lovedeep S, Pedroso Aline F, Shankar Sumukh Vasisht, Coppi Andreas, Khunte Akshay, Foppa Murilo, Brant Luisa C C, Barreto Sandhi M, Ribeiro Antonio Luiz P, Krumholz Harlan M, Oikonomou Evangelos K, Khera Rohan

机构信息

Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA.

Cardiovascular Data Science (CarDS) Lab, Yale School of Medicine, New Haven, CT 06510, USA.

出版信息

Eur Heart J Digit Health. 2025 Apr 10;6(4):554-566. doi: 10.1093/ehjdh/ztaf034. eCollection 2025 Jul.

Abstract

AIMS

Artificial intelligence (AI)-enhanced 12-lead electrocardiogram (ECG) can detect a range of structural heart diseases (SHDs); however, it has a limited role in community-based screening. We developed and externally validated a noise-resilient single-lead AI-ECG algorithm that can detect SHDs and predict the risk of their development using wearable/portable devices.

METHODS AND RESULTS

Using 266 740 ECGs from 99 205 patients with paired echocardiographic data at Yale New Haven Hospital, we developed AI Deep learning for Adapting Portable Technology in HEART disease detection (ADAPT-HEART), a noise-resilient, deep learning algorithm, to detect SHDs using lead I ECG. SHD was defined as a composite of having a left ventricular ejection fraction of < 40%, moderate or severe left-sided valvular disease, and severe left ventricular hypertrophy. ADAPT-HEART was validated in four community hospitals in USA, and the population-based cohort of ELSA-Brasil. We assessed the model's performance as a predictive biomarker among those without baseline SHD across hospital-based sites and the UK Biobank. The development population had a median age of 66 [interquartile range, 54-77] years and included 49 947 (50.3%) women, with 18 896 (19.0%) having any SHD. ADAPT-HEART had an area under the receiver operating characteristics curve (AUROC) of 0.879 (95% confidence interval, 0.870-0.888) with good calibration for detecting SHD in the test set, and consistent performance in hospital-based external sites (AUROC: 0.852-0.891) and ELSA-Brasil (AUROC: 0.859). Among individuals without baseline SHD, high vs. low ADAPT-HEART probability conferred a 2.8- to 5.7-fold increase in the risk of future SHD across data sources (all < 0.05).

CONCLUSION

We propose a novel model that detects and predicts a range of SHDs from noisy single-lead ECGs obtainable on portable/wearable devices, providing a scalable strategy for community-based screening and risk stratification for SHD.

摘要

目的

人工智能(AI)增强的12导联心电图(ECG)可检测一系列结构性心脏病(SHD);然而,其在社区筛查中的作用有限。我们开发并进行了外部验证一种抗噪声单导联AI-ECG算法,该算法可使用可穿戴/便携式设备检测SHD并预测其发生风险。

方法与结果

利用来自耶鲁纽黑文医院99205例患者的266740份心电图及配对的超声心动图数据,我们开发了用于心脏病检测的人工智能深度学习适配便携式技术(ADAPT-HEART),这是一种抗噪声的深度学习算法,用于使用I导联心电图检测SHD。SHD定义为左心室射血分数<40%、中度或重度左侧瓣膜病以及重度左心室肥厚的综合情况。ADAPT-HEART在美国的四家社区医院以及基于巴西人群的ELSA队列中进行了验证。我们在基于医院的站点以及英国生物银行中评估了该模型在无基线SHD人群中作为预测生物标志物的性能。开发人群的年龄中位数为66岁[四分位间距,54 - 77岁],包括49947名(50.3%)女性,其中18896名(19.0%)患有任何SHD。ADAPT-HEART在检测测试集中的SHD时,受试者操作特征曲线下面积(AUROC)为0.879(95%置信区间,0.870 - 0.888),校准良好,且在基于医院的外部站点(AUROC:0.852 - 0.891)和ELSA - 巴西(AUROC:0.859)中表现一致。在无基线SHD的个体中,ADAPT-HEART概率高与低相比,在所有数据源中未来发生SHD的风险增加了2.8至5.7倍(所有P<0.05)。

结论

我们提出了一种新模型,该模型可从便携式/可穿戴设备上获取的有噪声单导联心电图中检测并预测一系列SHD,为基于社区的SHD筛查和风险分层提供了一种可扩展策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/287d/12282373/43546a71cae2/ztaf034_ga.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验