Center of Excellence in Information Technology, Institute of Management Sciences, Hayatabad, Peshawar 25000, Pakistan.
School of Computing and Information Science, Anglia Ruskin University, Cambridge, UK.
Comput Intell Neurosci. 2023 Oct 16;2023:7282944. doi: 10.1155/2023/7282944. eCollection 2023.
Histopathological images are very effective for investigating the status of various biological structures and diagnosing diseases like cancer. In addition, digital histopathology increases diagnosis precision and provides better image quality and more detail for the pathologist with multiple viewing options and team annotations. As a result of the benefits above, faster treatment is available, increasing therapy success rates and patient recovery and survival chances. However, the present manual examination of these images is tedious and time-consuming for pathologists. Therefore, reliable automated techniques are needed to effectively classify normal and malignant cancer images. This paper applied a deep learning approach, namely, EfficientNet and its variants from B0 to B7. We used different image resolutions for each model, from 224 × 224 pixels to 600 × 600 pixels. We also applied transfer learning and parameter tuning techniques to improve the results and overcome the overfitting problem. We collected the dataset from the Lung and Colon Cancer Histopathological Image LC25000 image dataset. The dataset acquisition consists of 25,000 histopathology images of five classes (lung adenocarcinoma, lung squamous cell carcinoma, benign lung tissue, colon adenocarcinoma, and colon benign tissue). Then, we performed preprocessing on the dataset to remove the noisy images and bring them into a standard format. The model's performance was evaluated in terms of classification accuracy and loss. We have achieved good accuracy results for all variants; however, the results of EfficientNetB2 stand excellent, with an accuracy of 97% for 260 × 260 pixels resolution images.
组织病理学图像对于研究各种生物结构的状态和诊断癌症等疾病非常有效。此外,数字组织病理学提高了诊断精度,为病理学家提供了更好的图像质量和更多的细节,并提供了多种查看选项和团队注释。由于这些好处,治疗速度更快,提高了治疗成功率以及患者的康复和生存机会。然而,目前病理学家手动检查这些图像既繁琐又耗时。因此,需要可靠的自动化技术来有效分类正常和恶性癌症图像。本文应用了一种深度学习方法,即 EfficientNet 及其变体从 B0 到 B7。我们为每个模型使用了不同的图像分辨率,从 224×224 像素到 600×600 像素。我们还应用了迁移学习和参数调整技术来提高结果并克服过拟合问题。我们从 Lung and Colon Cancer Histopathological Image LC25000 图像数据集收集了数据集。数据集采集包括五类(肺腺癌、肺鳞状细胞癌、良性肺组织、结肠腺癌和结肠良性组织)的 25000 张组织病理学图像。然后,我们对数据集进行预处理,以去除噪声图像并将其转换为标准格式。我们根据分类准确性和损失来评估模型的性能。我们为所有变体都取得了良好的准确性结果;然而,EfficientNetB2 的结果非常出色,对于 260×260 像素分辨率的图像,准确率达到了 97%。