Suppr超能文献

使用机器学习对缺血性中风或短暂性脑缺血发作的液体衰减反转恢复磁共振成像中的法泽卡斯量表进行自动评分。

Automated rating of Fazekas scale in fluid-attenuated inversion recovery MRI for ischemic stroke or transient ischemic attack using machine learning.

作者信息

Jeon Eun-Tae, Kim Seung Min, Jung Jin-Man

机构信息

Department of Neurology, Korea University Ansan Hospital, University College of Medicine, Ansan, South Korea.

Department of Neurology, Veterans Health Service Medical Center, Seoul, South Korea.

出版信息

Sci Rep. 2025 Sep 1;15(1):32219. doi: 10.1038/s41598-025-17287-5.

Abstract

White matter hyperintensities (WMH) are commonly assessed using the Fazekas scale, a subjective visual grading system. Despite the emergence of deep learning models for automatic WMH grading, their application in stroke patients remains limited. This study aimed to develop and validate an automatic segmentation and grading model for WMH in stroke patients, utilizing spatial-probabilistic methods. We developed a two-step deep learning pipeline to predict Fazekas scale scores from T2-weighted FLAIR images. First, WMH segmentation was performed using a residual neural network based on the U-Net architecture. Then, Fazekas scale grading was carried out using a 3D convolutional neural network trained on the segmented WMH probability volumes. A total of 471 stroke patients from three different sources were included in the analysis. The performance metrics included area under the precision-recall curve (AUPRC), Dice similarity coefficient, and absolute error for WMH volume prediction. In addition, agreement analysis and quadratic weighted kappa were calculated to assess the accuracy of the Fazekas scale predictions. The WMH segmentation model achieved an AUPRC of 0.81 (95% CI, 0.55-0.95) and a Dice similarity coefficient of 0.73 (95% CI, 0.49-0.87) in the internal test set. The mean absolute error between the true and predicted WMH volumes was 3.1 ml (95% CI, 0.0 ml-15.9 ml), with no significant variation across Fazekas scale categories. The agreement analysis demonstrated strong concordance, with an R-squared value of 0.91, a concordance correlation coefficient of 0.96, and a systematic difference of 0.33 ml in the internal test set, and 0.94, 0.97, and 0.40 ml, respectively, in the external validation set. In predicting Fazekas scores, the 3D convolutional neural network achieved quadratic weighted kappa values of 0.951 for regression tasks and 0.956 for classification tasks in the internal test set, and 0.898 and 0.956, respectively, in the external validation set. The proposed deep learning pipeline demonstrated robust performance in automatic WMH segmentation and Fazekas scale grading from FLAIR images in stroke patients. This approach offers a reliable and efficient tool for evaluating WMH burden, which may assist in predicting future vascular events.

摘要

脑白质高信号(WMH)通常使用Fazekas量表进行评估,这是一种主观的视觉分级系统。尽管出现了用于自动WMH分级的深度学习模型,但其在中风患者中的应用仍然有限。本研究旨在利用空间概率方法开发并验证一种针对中风患者WMH的自动分割和分级模型。我们开发了一个两步深度学习管道,用于从T2加权液体衰减反转恢复(FLAIR)图像预测Fazekas量表评分。首先,使用基于U-Net架构的残差神经网络进行WMH分割。然后,使用在分割后的WMH概率体积上训练的3D卷积神经网络进行Fazekas量表分级。分析纳入了来自三个不同来源的471例中风患者。性能指标包括精确率-召回率曲线下面积(AUPRC)、骰子相似系数以及WMH体积预测的绝对误差。此外,计算一致性分析和二次加权kappa值以评估Fazekas量表预测的准确性。在内部测试集中,WMH分割模型的AUPRC为0.81(95%置信区间,0.55 - 0.95),骰子相似系数为0.73(95%置信区间,0.49 - 0.87)。真实和预测的WMH体积之间的平均绝对误差为3.1毫升(95%置信区间,0.0毫升 - 15.9毫升),在Fazekas量表类别之间无显著差异。一致性分析显示出很强的一致性,内部测试集中的决定系数R²值为0.91,一致性相关系数为0.96,系统差异为0.33毫升,外部验证集中分别为0.94、0.97和0.40毫升。在预测Fazekas评分时,3D卷积神经网络在内部测试集中回归任务的二次加权kappa值为0.95​​1,分类任务为0.956,在外部验证集中分别为0.898和0.956。所提出的深度学习管道在中风患者的FLAIR图像自动WMH分割和Fazekas量表分级中表现出强大的性能。这种方法为评估WMH负担提供了一种可靠且高效的工具,可能有助于预测未来的血管事件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e40/12402271/03019be9924a/41598_2025_17287_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验