Vajanapanich Peerapak, Nearmnala Parinthon, Parkbhorn Jinjutha, Nutho Bodee, Rungrotmongkol Thanyada, Hongdilokkul Narupat
Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
ACS Synth Biol. 2025 Sep 19;14(9):3612-3623. doi: 10.1021/acssynbio.5c00379. Epub 2025 Sep 2.
Achieving efficient enzyme catalysis under extreme pH conditions remains a major challenge in biocatalysis and synthetic biology. To address this, we present an enzyme engineering strategy that integrates rational redesign of catalytic residues with directed evolution to enable robust enzyme function at alkaline pH. The core principle involves replacing the conserved general base with an ionizable residue of higher intrinsic p, shifting the proton transfer mechanism from carboxylate- to phenolate-mediated catalysis. Previously, we engineered TEM β-lactamase by substituting the universally conserved Glu166 with tyrosine (E166Y), which severely impaired activity. Directed evolution subsequently restored function, yielding the optimized variant YR5-2. Although this engineering effort originally aimed to validate a novel selection platform, the evolutionary trajectory of YR5-2 exemplifies our proposed strategy in the present study. Here, we characterize YR5-2 and its parental variants across a wide pH range. Steady-state kinetic analyses reveal a > 3-unit shift in the optimal pH for , with YR5-2 reaching 870 s at pH 10.0, a value comparable to that of the wild type at its optimal pH. Kinetic analyses of Y166E revertants, together with molecular dynamics simulations, support a mechanistic transition in which Tyr166 functions as the catalytic general base. In vivo experiments further demonstrate the utility of YR5-2 as a selectable marker by enabling recombinant protein expression in under alkaline growth conditions. This work establishes a broadly applicable framework for reprogramming enzyme catalytic mechanisms, particularly in hydrolases, to expand their operational pH range and unlock new opportunities in industrial and environmental biocatalysis.
在极端pH条件下实现高效的酶催化仍然是生物催化和合成生物学中的一项重大挑战。为了解决这一问题,我们提出了一种酶工程策略,该策略将催化残基的合理重新设计与定向进化相结合,以实现酶在碱性pH下的强大功能。其核心原理是用具有更高固有pKa的可电离残基取代保守的通用碱基,将质子转移机制从羧酸盐介导的催化转变为酚盐介导的催化。此前,我们通过将普遍保守的Glu166替换为酪氨酸(E166Y)对TEMβ-内酰胺酶进行了工程改造,这严重损害了其活性。随后的定向进化恢复了功能,产生了优化变体YR5-2。尽管这项工程工作最初旨在验证一个新的选择平台,但YR5-2的进化轨迹体现了我们在本研究中提出的策略。在这里,我们在很宽的pH范围内对YR5-2及其亲本变体进行了表征。稳态动力学分析表明,其最佳pH发生了超过3个单位的变化,YR5-2在pH 10.0时达到870 s-1,这一数值与野生型在其最佳pH时相当。对Y166E回复突变体的动力学分析以及分子动力学模拟支持了一种机制转变,即Tyr166作为催化通用碱基发挥作用。体内实验进一步证明了YR5-2作为选择标记的效用,它能够在碱性生长条件下在大肠杆菌中实现重组蛋白表达。这项工作建立了一个广泛适用的框架,用于重新编程酶的催化机制,特别是在水解酶中,以扩大其操作pH范围,并在工业和环境生物催化中开启新的机遇。