Suppr超能文献

移植护理中人工智能驱动的他克莫司给药:队列研究

AI-Driven Tacrolimus Dosing in Transplant Care: Cohort Study.

作者信息

Huo Mingjia, Perez Sean, Awdishu Linda, Kerr Janice S, Xie Pengtao, Khan Adnan, Mekeel Kristin, Nemati Shamim

机构信息

Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, United States.

Department of Surgery, University of California San Diego, La Jolla, CA, United States.

出版信息

JMIR AI. 2025 Sep 2;4:e67302. doi: 10.2196/67302.

Abstract

BACKGROUND

Tacrolimus forms the backbone of immunosuppressive therapy in solid organ transplantation, requiring precise dosing due to its narrow therapeutic range. Maintaining therapeutic tacrolimus levels in the postoperative period is challenging due to diverse patient characteristics, donor organ factors, drug interactions, and evolving perioperative physiology.

OBJECTIVE

The aim of this study is to design a machine learning model to predict the next-day tacrolimus trough concentrations (C0) and guide dosing to prevent persistent under- or overdosing.

METHODS

We used retrospective data from 1597 adult recipients of kidney and liver transplants at UC San Diego Health to develop a long short-term memory (LSTM) model to predict next-day tacrolimus C0 in an inpatient setting. Predictors included transplant type, demographics, comorbidities, vital signs, laboratory parameters, ordered diet, and medications. Permutation feature importance was evaluated for the model. We further implemented a classification task to evaluate the model's ability to identify underdosing, therapeutic dosing, and overdosing. Finally, we generated next-day dose recommendations that would achieve tacrolimus C0 within the target ranges.

RESULTS

The LSTM model provided a mean absolute error of 1.880 ng/mL when predicting next-day tacrolimus C0. Top predictive features included the recent tacrolimus C0, tacrolimus doses, transplant organ type, diet, and interactive drugs. When predicting underdosing, therapeutic dosing, and overdosing using a 3-class classification task, the model achieved a microaverage F1-score of 0.653. For dose recommendations, the best clinical outcomes were achieved when the actual total daily dose closely aligned with the model's recommended dose (within 3 mg).

CONCLUSIONS

Ours is one of the largest studies to apply artificial intelligence to tacrolimus dosing, and our LSTM model effectively predicts tacrolimus C0 and could potentially guide accurate dose recommendations. Further prospective studies are needed to evaluate the model's performance in real-world dose adjustments.

摘要

背景

他克莫司是实体器官移植免疫抑制治疗的核心药物,因其治疗窗狭窄,需要精确给药。由于患者特征多样、供体器官因素、药物相互作用以及围手术期生理状态不断变化,在术后维持他克莫司的治疗水平具有挑战性。

目的

本研究旨在设计一种机器学习模型,以预测次日他克莫司谷浓度(C0)并指导给药,防止持续的剂量不足或过量。

方法

我们使用了加州大学圣地亚哥分校健康系统1597例成人肾移植和肝移植受者的回顾性数据,开发了一种长短期记忆(LSTM)模型,以预测住院患者次日的他克莫司C0。预测因素包括移植类型、人口统计学特征、合并症、生命体征、实验室参数、饮食医嘱和药物。对该模型进行排列特征重要性评估。我们进一步实施了一项分类任务,以评估该模型识别剂量不足、治疗剂量和剂量过量的能力。最后,我们生成了能使他克莫司C0达到目标范围的次日剂量建议。

结果

LSTM模型在预测次日他克莫司C0时的平均绝对误差为1.880 ng/mL。最重要的预测特征包括近期他克莫司C0、他克莫司剂量、移植器官类型、饮食和相互作用药物。在使用三类分类任务预测剂量不足、治疗剂量和剂量过量时,该模型的微平均F1分数为0.653。对于剂量建议,当实际每日总剂量与模型建议剂量密切一致(相差3 mg以内)时,可获得最佳临床结果。

结论

我们的研究是将人工智能应用于他克莫司给药的最大规模研究之一,我们的LSTM模型能有效预测他克莫司C0,并有可能指导准确的剂量建议。需要进一步的前瞻性研究来评估该模型在实际剂量调整中的表现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3aa8/12404564/53af2d63e88a/ai-v4-e67302-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验