Bai Risheng, Li Lin, Wang Jingxuan, Miao Shu, Sun Yu, Yu Jihong
State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
International Center of Future Science, Jilin University, Changchun 130012, P. R. China.
ACS Cent Sci. 2025 Jun 23;11(8):1336-1344. doi: 10.1021/acscentsci.5c00424. eCollection 2025 Aug 27.
Selective hydrogenation of biomass-derived furfural to furfuryl alcohol is fundamentally challenged by the dual adsorption of its reactive furan ring and carbonyl group on Pd catalysts, which drives nonselective pathways. To modulate the adsorption mode of furfural, we rationally incorporate carbon species onto Pd subnanoclusters encapsulated in a siliceous zeolite (Pd-C@S-1), achieving 98% selectivity for furfuryl alcohol at full furfural conversion, vastly outperforming the carbon-free Pd@S-1 (11.6% selectivity). Comprehensive characterizations and theoretical calculations reveal that the enhanced catalytic efficiency of Pd-C@S-1 arises from carbon-induced modifications to the electronic and steric properties of Pd. The resulting Pd-C species promote a vertical adsorption orientation of furfural via the carbonyl group, sterically hindering interactions between the furan ring and Pd active sites, thus leading to high selectivity for furfuryl alcohol. This work demonstrates that the modification of Pd with carbon species can alter the substrate adsorption configurations, enabling precise control over reaction pathways and offering a facile strategy for designing selective catalysts in biomass conversion.
生物质衍生的糠醛选择性加氢制糠醇面临着根本性挑战,即其反应性呋喃环和羰基在钯催化剂上的双重吸附会引发非选择性路径。为了调节糠醛的吸附模式,我们合理地将碳物种引入包裹在硅质沸石中的钯亚纳米团簇(Pd-C@S-1)上,在糠醛完全转化时实现了对糠醇98%的选择性,大大超过了无碳的Pd@S-1(选择性为11.6%)。综合表征和理论计算表明,Pd-C@S-1催化效率的提高源于碳对钯的电子和空间性质的修饰。由此产生的Pd-C物种促进了糠醛通过羰基的垂直吸附取向,空间位阻阻碍了呋喃环与钯活性位点之间的相互作用,从而导致对糠醇的高选择性。这项工作表明,用碳物种修饰钯可以改变底物吸附构型,实现对反应路径的精确控制,并为生物质转化中设计选择性催化剂提供了一种简便策略。