Niu Shurong, Zhang Lili, Wang Lina, Zhang Xue, Liu Erniao
Department of Obstetrics and Gynecology, Shanxi Medical University Second Hospital, Taiyuan, China.
Front Oncol. 2025 Aug 18;15:1595980. doi: 10.3389/fonc.2025.1595980. eCollection 2025.
Cervical cancer screening through cytology remains the gold standard for early detection, but manual analysis is time-consuming, labor-intensive, and prone to inter-observer variability. This study proposes an automated deep learning-based framework that integrates lesion detection, feature extraction, and classification to enhance the accuracy and efficiency of cytological diagnosis.
A dataset of 4,236 cervical cytology samples was collected from six medical centers, with lesion annotations categorized into six diagnostic classes (NILM, ASC-US, ASC-H, LSIL, HSIL, SCC). Four deep learning models, Swin Transformer, YOLOv11, Faster R-CNN, and DETR (DEtection TRansformer), were employed for lesion detection, and their performance was compared using mAP, IoU, precision, recall, and F1-score. From detected lesion regions, radiomics features (n=71) and deep learning features (n=1,792) extracted from EfficientNet were analyzed. Dimensionality reduction techniques (PCA, LASSO, ANOVA, MI, t-SNE) were applied to optimize feature selection before classification using XGBoost, Random Forest, CatBoost, TabNet, and TabTransformer. Additionally, an end-to-end classification model using EfficientNet was evaluated. The framework was validated using internal cross-validation and external testing on APCData (3,619 samples).
The Swin Transformer achieved the highest lesion detection accuracy (mAP: 0.94 external), outperforming YOLOv11, Faster R-CNN, and DETR. Combining radiomics and deep features with TabTransformer yielded superior classification (test accuracy: 94.6%, AUC: 95.9%, recall: 94.1%), exceeding both single-modality and end-to-end models. Ablation studies confirmed the importance of both the detection module and hybrid feature fusion. External validation demonstrated high generalizability (accuracy: 92.8%, AUC: 95.1%). Comprehensive statistical analyses, including bootstrapped confidence intervals and Delong's test, further substantiated the robustness and reliability of the proposed framework.
The proposed AI-driven cytology analysis framework offers superior lesion detection, feature fusion-based classification, and robust generalizability, providing a scalable solution for automated cervical cancer screening. Future efforts should focus on explainable AI (XAI), real-time deployment, and larger-scale validation to facilitate clinical integration.
通过细胞学进行宫颈癌筛查仍然是早期检测的金标准,但人工分析耗时、 labor-intensive且容易出现观察者间的差异。本研究提出了一种基于深度学习的自动化框架,该框架集成了病变检测、特征提取和分类,以提高细胞学诊断的准确性和效率。
从六个医疗中心收集了4236例宫颈细胞学样本的数据集,病变注释分为六个诊断类别(NILM、ASC-US、ASC-H、LSIL、HSIL、SCC)。使用四个深度学习模型Swin Transformer、YOLOv11、Faster R-CNN和DETR(检测变压器)进行病变检测,并使用mAP、IoU、精度、召回率和F1分数比较它们的性能。从检测到的病变区域分析了从EfficientNet提取的放射组学特征(n = 71)和深度学习特征(n = 1792)。在使用XGBoost、随机森林、CatBoost、TabNet和TabTransformer进行分类之前,应用降维技术(PCA、LASSO、方差分析、MI、t-SNE)优化特征选择。此外,还评估了使用EfficientNet的端到端分类模型。该框架使用内部交叉验证和对APCData(3619个样本)的外部测试进行了验证。
Swin Transformer实现了最高的病变检测准确率(外部mAP:0.94),优于YOLOv11、Faster R-CNN和DETR。将放射组学和深度特征与TabTransformer相结合产生了更好的分类(测试准确率:94.6%,AUC:95.9%,召回率:94.1%),超过了单模态和端到端模型。消融研究证实了检测模块和混合特征融合的重要性。外部验证显示出高通用性(准确率:92.8%,AUC:95.1%)。包括自举置信区间和德龙检验在内的综合统计分析进一步证实了所提出框架的稳健性和可靠性。
所提出的人工智能驱动的细胞学分析框架提供了卓越的病变检测、基于特征融合的分类和强大的通用性,为自动化宫颈癌筛查提供了可扩展的解决方案。未来的工作应集中在可解释人工智能(XAI)、实时部署和更大规模的验证上,以促进临床整合。