Suppr超能文献

表观扩散系数用于鉴别颌下间隙和舌下间隙的良恶性病变

Apparent diffusion coefficient for distinguishing between benign and malignant lesions in submandibular and sublingual spaces.

作者信息

Tanabe Yuka, Ogura Ichiro

机构信息

Quantitative Diagnostic Imaging, Field of Oral and Maxillofacial Imaging and Histopathological Diagnostics, Course of Applied Science, The Nippon Dental University Graduate School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata, Niigata, 951-8580, Japan.

Department of Oral and Maxillofacial Radiology, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata, Niigata, 951-8580, Japan.

出版信息

Oral Radiol. 2025 Sep 3. doi: 10.1007/s11282-025-00857-8.

Abstract

OBJECTIVES

The aim of this study was performed to investigate the apparent diffusion coefficient (ADC) for distinguishing between benign and malignant lesions in submandibular and sublingual spaces.

METHODS

Thirteen patients with benign and malignant lesions in submandibular and sublingual spaces were evaluated by MRI. The MRI were obtained by a 1.5 T MR unit using a head coil, and included T1-weighted image (T1WI), T2-weighted image (T2WI) and diffusion-weighted image (DWI). The ADC maps were calculated automatically by the DWI obtained with b = 800 s/mm. We placed regions of interest (ROI) to measure the ADC values on ADC maps, and the ADC value were automatically analyzed. The ADC in benign and malignant lesions were compared by Mann-Whitney U test with a 5% significance level.

RESULTS

Regarding all lesions, T1WI, T2WI and DWI showed low-, high- and high-signal intensity area, respectively. The ADC of malignant lesions (1.10 ± 0.05 × 10 mms) was lower than those of benign lesions (2.36 ± 0.64 × 10 mms, p = 0.001).

CONCLUSION

The ADC could be effective for the objectively and quantitatively diagnosis of submandibular and sublingual malignant tumors.

摘要

目的

本研究旨在探讨表观扩散系数(ADC)在鉴别颌下间隙和舌下间隙良性与恶性病变中的作用。

方法

对13例颌下间隙和舌下间隙存在良性和恶性病变的患者进行了MRI评估。MRI由1.5T MR设备使用头部线圈获得,包括T1加权像(T1WI)、T2加权像(T2WI)和扩散加权像(DWI)。通过b = 800 s/mm的DWI自动计算ADC图。我们在ADC图上放置感兴趣区(ROI)来测量ADC值,并对ADC值进行自动分析。采用Mann-Whitney U检验比较良性和恶性病变的ADC值,显著性水平为5%。

结果

对于所有病变,T1WI、T2WI和DWI分别显示低信号、高信号和高信号强度区域。恶性病变的ADC值(1.10±0.05×10⁻³mm²/s)低于良性病变(2.36±0.64×10⁻³mm²/s,p = 0.001)。

结论

ADC可有效用于颌下和舌下恶性肿瘤的客观定量诊断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验