Shima Sayuri, Ohdake Reiko, Mizutani Yasuaki, Tatebe Harutsugu, Koike Riki, Kasai Atsushi, Bagarinao Epifanio, Kawabata Kazuya, Ueda Akihiro, Ito Mizuki, Hata Junichi, Ishigaki Shinsuke, Yoshimoto Junichiro, Toyama Hiroshi, Tokuda Takahiko, Takashima Akihiko, Watanabe Hirohisa
Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan.
Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan.
Front Aging Neurosci. 2025 Aug 20;17:1571429. doi: 10.3389/fnagi.2025.1571429. eCollection 2025.
The development of non-invasive clinical diagnostics is paramount for the early detection of Alzheimer's disease (AD). Neurofibrillary tangles in AD originate from the entorhinal cortex, a cortical memory area that mediates navigation via path integration (PI). Here, we studied correlations between PI errors and levels of a range of AD biomarkers using a 3D virtual reality navigation system to explore PI as a non-invasive surrogate marker for early detection.
We examined 111 healthy adults for PI using a head-mounted 3D VR system, AD-related plasma biomarkers (GFAP, NfL, Aβ40, Aβ42, and p-tau181), Apolipoprotein E (ApoE) genotype, and demographic and cognitive assessments. Covariance of PI and AD biomarkers was assessed statistically, including tests for multivariate linear regression, logistic regression, and predictor importance ranking using machine learning, to identify predictive relationships for PI errors.
We found significant positive correlations between PI errors with age and plasma GFAP, p-tau181, and NfL levels. Multivariate analysis identified significant correlations of plasma GFAP (-value = 2.16, = 0.0332) and p-tau181 (-value = 2.53, = 0.0128) with PI errors. Predictor importance ranking using machine learning and receiver operating characteristic curves identified plasma p-tau181 as the most significant predictor of PI. ApoE genotype and plasma p-tau181 showed positive and negative PI associations (ApoE: coefficient = 0.650, = 0.037; p-tau181: coefficient = -0.899, = 0.041). EC thickness exhibited negative correlations with age, mean PI errors, and GFAP, NfL, and p-tau181; however, none of these associations remained significant after adjusting for age in linear regression analyses.
These findings suggest that PI quantified by 3D VR navigation systems may be useful as a surrogate diagnostic tool for the detection of early AD pathophysiology. The hierarchical application of 3D VR PI and plasma p-tau181, in particular, may be an effective combinatorial biomarker for early AD neurodegeneration. These findings advance the application of non-invasive diagnostic tools for early testing and monitoring of AD, paving the way for timely therapeutic interventions and improved epidemiological patient outcomes.
无创临床诊断技术的发展对于阿尔茨海默病(AD)的早期检测至关重要。AD中的神经原纤维缠结起源于内嗅皮质,这是一个通过路径整合(PI)介导导航的皮质记忆区域。在此,我们使用3D虚拟现实导航系统研究PI误差与一系列AD生物标志物水平之间的相关性,以探索PI作为早期检测的无创替代标志物。
我们使用头戴式3D虚拟现实系统、与AD相关的血浆生物标志物(GFAP、NfL、Aβ40、Aβ42和p-tau181)、载脂蛋白E(ApoE)基因型以及人口统计学和认知评估对111名健康成年人进行PI检测。对PI和AD生物标志物的协方差进行统计学评估,包括多元线性回归测试、逻辑回归测试以及使用机器学习进行预测变量重要性排名,以确定PI误差的预测关系。
我们发现PI误差与年龄以及血浆GFAP、p-tau181和NfL水平之间存在显著正相关。多变量分析确定血浆GFAP(-值 = 2.16, = 0.0332)和p-tau181(-值 = 2.53, = 0.0128)与PI误差存在显著相关性。使用机器学习和受试者工作特征曲线进行的预测变量重要性排名确定血浆p-tau181是PI的最显著预测因子。ApoE基因型和血浆p-tau181显示出与PI的正相关和负相关(ApoE:系数 = 0.650, = 0.037;p-tau181:系数 = -0.899, = 0.041)。内嗅皮质厚度与年龄、平均PI误差以及GFAP、NfL和p-tau181呈负相关;然而,在进行线性回归分析时,在调整年龄后,这些关联均不再显著。
这些发现表明,通过3D虚拟现实导航系统量化的PI可能作为检测早期AD病理生理学的替代诊断工具。特别是,3D VR PI和血浆p-tau181的分层应用可能是早期AD神经退行性变的有效组合生物标志物。这些发现推进了无创诊断工具在AD早期检测和监测中的应用,为及时的治疗干预和改善患者流行病学结局铺平了道路。