Dho Yaereen, Smith Kevin, Sattely Elizabeth S
Department of Chemistry, Stanford University, Stanford, CA 94305.
Department of Chemical Engineering, Stanford University, Stanford, CA 94305.
bioRxiv. 2025 Aug 29:2025.08.26.672243. doi: 10.1101/2025.08.26.672243.
Plants have evolved to produce diverse molecules that inhibit protein translation. A lead example is homoharringtonine (HHT), both a key tool for ribosomal profiling and an FDA-approved treatment for chronic myeloid leukemia. HHT is commercially produced through semi-synthesis by esterifying the alkaloid core cephalotaxine (CET) extracted from endangered species. Despite its medicinal significance, a biosynthetic pathway to CET and HHT has not been described. Here, we use paired untargeted metabolomics (stable-isotope labeled precursor feeding) and transcriptomics to elucidate a near-complete biosynthesis to CET without prior knowledge of intermediates and biosynthetic genes. We show that while CET alkaloid core is actively biosynthesized only in growing root tips, both CET and HHT accumulate throughout the plant. We discovered and characterized seven CET pathway intermediates and six novel biosynthetic enzymes that, together, can be used to produce cephalotaxinone, the likely direct precursor of CET. Included are non-canonical cytochrome P450s, an atypical short-chain dehydrogenase, and a 2-oxogluatrate-dependent dioxygenase that together result in carbon excision and the formation of the characteristic pentacyclic backbone of HHT alkaloids. Our data support a model where cephalotaxinone is the last pathway intermediate produced specifically in the root tips, and its distribution throughout the plant is likely the starting point for subsequent elaboration to HHT. This study not only establishes a metabolic route to the core scaffold of HHT-enabling future sustainable, large-scale production of this valuable drug-but also suggests how species employ a whole plant coordination to regulate the biosynthesis of eukaryotic ribosomal toxins.
植物已经进化出能够产生多种抑制蛋白质翻译的分子。一个典型例子是高三尖杉酯碱(HHT),它既是核糖体分析的关键工具,也是美国食品药品监督管理局(FDA)批准用于治疗慢性粒细胞白血病的药物。HHT通过将从濒危物种中提取的生物碱核心部分三尖杉碱(CET)进行酯化的半合成方法进行商业化生产。尽管其具有药用价值,但尚未有关于CET和HHT的生物合成途径的描述。在此,我们使用配对的非靶向代谢组学(稳定同位素标记前体喂养)和转录组学,在不预先了解中间体和生物合成基因的情况下,阐明了一条近乎完整的CET生物合成途径。我们发现,虽然CET生物碱核心仅在生长的根尖中活跃地进行生物合成,但CET和HHT在整个植物中都有积累。我们发现并鉴定了七种CET途径中间体和六种新型生物合成酶,它们共同可用于生产三尖杉酮碱,这可能是CET的直接前体。其中包括非典型细胞色素P450、一种非典型短链脱氢酶和一种依赖2-氧代戊二酸的双加氧酶,它们共同导致碳的切除并形成HHT生物碱特有的五环骨架。我们的数据支持这样一种模型,即三尖杉酮碱是专门在根尖中产生的最后一个途径中间体,其在整个植物中的分布可能是后续合成HHT的起始点。这项研究不仅建立了一条通往HHT核心支架的代谢途径,从而使未来能够可持续地大规模生产这种有价值的药物,还揭示了植物如何通过全株协调来调节真核核糖体毒素的生物合成。