Suppr超能文献

可分离的神经群体表征由小鼠早期视觉系统中的混合单神经元选择性构建而成。

Separable neural population representations are constructed from mixed single neuron selectivity in the mouse early visual system.

作者信息

Moreno Juan Santiago, Garcia Nicholas, Denman Daniel J

机构信息

University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.

出版信息

bioRxiv. 2025 Aug 30:2025.08.25.672226. doi: 10.1101/2025.08.25.672226.

Abstract

Both sensory and non-sensory brain regions receive mixed inputs from single neurons which require decomposition and integration before proceeding through a processing hierarchy. Whether mixed input signals are used in biological neural networks to derive pure single neuron representations, or distributed as new population representations from mixed single neurons, is not clear. In this study, we measured the distribution of single neuron hue and luminance tuning in the dorsolateral geniculate nucleus (dLGN) and primary visual cortex (V1) of mice, as well as the information about and structure of hue and luminance representations in populations of hundred of simultaneously sampled neurons. We compare single neuron and population encoding to null models expected for random integration and extraction of pure categorical single neuron representation. Using both univariate and multivariate regression techniques, we consistently noted that tuning for hue and luminance, rather than clustering into categorical response structures, formed uniform distributions. While the distribution of single neuron selectivity varied across the thalamocortical circuit, we found no evidence of categorical tuning organization emerging in the hierarchy. Nevertheless, populations contained complete information, in either high-dimensional linear representations or low-dimensional non-linear representations. In summary, we find that as early as primary sensory cortex and thalamus single neurons that have mixed selectivity for hue and luminance form a high dimensional representation of those variables, which can be non-linearly embedded in multiple separable representations.

摘要

感觉和非感觉脑区都接收来自单个神经元的混合输入,这些输入在通过处理层级之前需要进行分解和整合。混合输入信号是否在生物神经网络中用于导出纯单个神经元表征,还是作为来自混合单个神经元的新群体表征进行分布,目前尚不清楚。在本研究中,我们测量了小鼠背外侧膝状核(dLGN)和初级视觉皮层(V1)中单个神经元色调和亮度调谐的分布,以及数百个同时采样的神经元群体中色调和亮度表征的信息和结构。我们将单个神经元和群体编码与预期用于随机整合和提取纯分类单个神经元表征的零模型进行比较。使用单变量和多变量回归技术,我们一致注意到,色调和亮度的调谐形成了均匀分布,而不是聚集成分类响应结构。虽然单个神经元选择性的分布在丘脑皮质回路中有所不同,但我们没有发现分层中出现分类调谐组织的证据。然而,群体在高维线性表征或低维非线性表征中都包含完整信息。总之,我们发现,早在初级感觉皮层和丘脑中,对色调和亮度具有混合选择性的单个神经元就形成了这些变量的高维表征,这些表征可以非线性地嵌入到多个可分离的表征中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b72/12407966/247a45e38528/nihpp-2025.08.25.672226v1-f0001.jpg

相似文献

7
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
10
Topical antiseptics for chronic suppurative otitis media.
Cochrane Database Syst Rev. 2025 Jun 9;6(6):CD013055. doi: 10.1002/14651858.CD013055.pub3.

本文引用的文献

2
Mixed selectivity: Cellular computations for complexity.
Neuron. 2024 Jul 17;112(14):2289-2303. doi: 10.1016/j.neuron.2024.04.017. Epub 2024 May 9.
3
Spike sorting with Kilosort4.
Nat Methods. 2024 May;21(5):914-921. doi: 10.1038/s41592-024-02232-7. Epub 2024 Apr 8.
4
Birds multiplex spectral and temporal visual information via retinal On- and Off-channels.
Nat Commun. 2023 Aug 31;14(1):5308. doi: 10.1038/s41467-023-41032-z.
5
Learnable latent embeddings for joint behavioural and neural analysis.
Nature. 2023 May;617(7960):360-368. doi: 10.1038/s41586-023-06031-6. Epub 2023 May 3.
6
Joint representations of color and form in mouse visual cortex described by random pooling from rods and cones.
J Neurophysiol. 2023 Mar 1;129(3):619-634. doi: 10.1152/jn.00138.2022. Epub 2023 Jan 25.
7
Coordinated multiplexing of information about separate objects in visual cortex.
Elife. 2022 Nov 29;11:e76452. doi: 10.7554/eLife.76452.
8
The implications of categorical and category-free mixed selectivity on representational geometries.
Curr Opin Neurobiol. 2022 Dec;77:102644. doi: 10.1016/j.conb.2022.102644. Epub 2022 Oct 28.
9
The Neurodata Without Borders ecosystem for neurophysiological data science.
Elife. 2022 Oct 4;11:e78362. doi: 10.7554/eLife.78362.
10
A scale-dependent measure of system dimensionality.
Patterns (N Y). 2022 Aug 6;3(8):100555. doi: 10.1016/j.patter.2022.100555. eCollection 2022 Aug 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验