Recanatesi Stefano, Bradde Serena, Balasubramanian Vijay, Steinmetz Nicholas A, Shea-Brown Eric
Center for Computational Neuroscience, University of Washington, Seattle, WA 98195, USA.
David Rittenhouse Laboratories, University of Pennsylvania, Philadelphia, PA 19104, USA.
Patterns (N Y). 2022 Aug 6;3(8):100555. doi: 10.1016/j.patter.2022.100555. eCollection 2022 Aug 12.
A fundamental problem in science is uncovering the effective number of degrees of freedom in a complex system: its dimensionality. A system's dimensionality depends on its spatiotemporal scale. Here, we introduce a scale-dependent generalization of a classic enumeration of latent variables, the participation ratio. We demonstrate how the scale-dependent participation ratio identifies the appropriate dimension at local, intermediate, and global scales in several systems such as the Lorenz attractor, hidden Markov models, and switching linear dynamical systems. We show analytically how, at different limiting scales, the scale-dependent participation ratio relates to well-established measures of dimensionality. This measure applied in neural population recordings across multiple brain areas and brain states shows fundamental trends in the dimensionality of neural activity-for example, in behaviorally engaged versus spontaneous states. Our novel method unifies widely used measures of dimensionality and applies broadly to multivariate data across several fields of science.
即其维度。系统的维度取决于其时空尺度。在此,我们引入了一种与尺度相关的经典潜在变量枚举方法的推广,即参与率。我们展示了与尺度相关的参与率如何在几个系统中,如洛伦兹吸引子、隐马尔可夫模型和切换线性动力系统,在局部、中间和全局尺度上确定合适的维度。我们通过分析表明,在不同的极限尺度下,与尺度相关的参与率如何与已确立的维度度量相关。这种方法应用于多个脑区和脑状态的神经群体记录,揭示了神经活动维度的基本趋势——例如,在行为参与状态与自发状态下。我们的新方法统一了广泛使用的维度度量,并广泛适用于多个科学领域的多变量数据。