Suppr超能文献

撰写与阅读:利用合成DNA修饰进行纳米孔测序

Write and Read: Harnessing Synthetic DNA Modifications for Nanopore Sequencing.

作者信息

Bertocchi Uri, Grunwald Assaf, Goldner Gal, Eitan Eliran, Avraham Sigal, Dvir Shani, Deek Jasline, Michaeli Yael, Yao Brian, Listgarten Jennifer, Simpson Jared T, Timp Winston, Ebenstein Yuval

机构信息

School of Chemistry, Tel Aviv University, Tel Aviv-Yafo, 6997801, Israel.

Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo, 6997801, Israel.

出版信息

bioRxiv. 2025 Aug 31:2025.04.14.648727. doi: 10.1101/2025.04.14.648727.

Abstract

An exciting feature of nanopore sequencing is its ability to record multi-omic information on the same sequenced DNA molecule. Well-trained models allow the detection of nucleotide-specific molecular signatures through changes in ionic current as DNA molecules translocate through the nanopore. Thus, naturally occurring DNA modifications, such as DNA methylation and hydroxymethylation, may be recorded simultaneously with the genetic sequence. Additional genomic information, such as chromatin state or the locations of bound transcription factors, may also be recorded if their locations are chemically encoded into the DNA. Here, we present a versatile "write-and-read" framework, where chemo-enzymatic DNA labeling with unnatural synthetic tags results in predictable electrical fingerprints in nanopore sequencing. As a proof-of-concept, we explore a DNA glucosylation approach that selectively modifies 5-hydroxymethylcytosine (5hmC) with glucose or glucose-azide adducts. We demonstrate that these modifications generate distinct and reproducible electrical shifts, enabling the direct detection of chemically altered nucleotides. We further demonstrate that enzymatic alkylation, such as the enzymatic transfer of azide residues to the N6 position of adenines, also produces characteristic nanopore signal shifts relative to the native adenine and 6-methyladenine. Beyond direct nucleotide detection, this approach introduces new possibilities for bio-orthogonal DNA labeling, enabling an extended alphabet of sequence-specific detectable moieties. The future use of programmable chemical modifications for simultaneous analysis of multiple omics features on individual molecules opens new avenues for genetic research and discovery.

摘要

纳米孔测序的一个令人兴奋的特点是它能够在同一个测序的DNA分子上记录多组学信息。训练有素的模型能够通过DNA分子穿过纳米孔时离子电流的变化来检测核苷酸特异性分子特征。因此,自然发生的DNA修饰,如DNA甲基化和羟甲基化,可以与基因序列同时记录下来。如果染色质状态或结合的转录因子的位置被化学编码到DNA中,那么其他基因组信息,如染色质状态或结合的转录因子的位置,也可以被记录下来。在这里,我们提出了一个通用的“写入-读取”框架,其中用非天然合成标签进行化学酶促DNA标记会在纳米孔测序中产生可预测的电指纹。作为概念验证,我们探索了一种DNA糖基化方法,该方法用葡萄糖或葡萄糖-叠氮化物加合物选择性修饰5-羟甲基胞嘧啶(5hmC)。我们证明这些修饰会产生独特且可重复的电位移,从而能够直接检测化学改变的核苷酸。我们进一步证明,酶促烷基化,如将叠氮化物残基酶促转移到腺嘌呤的N6位置,相对于天然腺嘌呤和6-甲基腺嘌呤也会产生特征性的纳米孔信号位移。除了直接检测核苷酸外,这种方法还为生物正交DNA标记带来了新的可能性,从而实现了一系列可序列特异性检测的基团。未来使用可编程化学修饰对单个分子上的多个组学特征进行同时分析,为基因研究和发现开辟了新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adf2/12434886/181f76217bf5/nihpp-2025.04.14.648727v3-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验