State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Renmin Ave. No.58, Haikou, 570228, China.
Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, James-Watt-Strasse 1, Bremen, D-28359, Germany.
Microbiome. 2024 Apr 3;12(1):68. doi: 10.1186/s40168-024-01779-z.
The trophic strategy is one key principle to categorize microbial lifestyles, by broadly classifying microorganisms based on the combination of their preferred carbon sources, electron sources, and electron sinks. Recently, a novel trophic strategy, i.e., chemoorganoautotrophy-the utilization of organic carbon as energy source but inorganic carbon as sole carbon source-has been specifically proposed for anaerobic methane oxidizing archaea (ANME-1) and Bathyarchaeota subgroup 8 (Bathy-8).
To further explore chemoorganoautotrophy, we employed stable isotope probing (SIP) of nucleic acids (rRNA or DNA) using unlabeled organic carbon and C-labeled dissolved inorganic carbon (DIC), i.e., inverse stable isotope labeling, in combination with metagenomics. We found that ANME-1 archaea actively incorporated C-DIC into RNA in the presence of methane and lepidocrocite when sulfate was absent, but assimilated organic carbon when cellulose was added to incubations without methane additions. Bathy-8 archaea assimilated C-DIC when lignin was amended; however, their DNA was derived from both inorganic and organic carbon sources rather than from inorganic carbon alone. Based on SIP results and supported by metagenomics, carbon transfer between catabolic and anabolic branches of metabolism is possible in these archaeal groups, indicating their anabolic versatility.
We provide evidence for the incorporation of the mixed organic and inorganic carbon by ANME-1 and Bathy-8 archaea in the environment. Video Abstract.
营养策略是一种将微生物生活方式进行分类的关键原则,它根据微生物对碳源、电子源和电子受体的偏好组合,将微生物广泛地分为不同的类别。最近,一种新的营养策略,即化能有机自养作用——利用有机碳作为能源,但将无机碳作为唯一的碳源,已经被专门提出用于厌氧甲烷氧化古菌(ANME-1)和巴氏古菌亚群 8(Bathy-8)。
为了进一步探索化能有机自养作用,我们使用未标记的有机碳和 C 标记的溶解无机碳(DIC),即反向稳定同位素标记,结合宏基因组学,对核酸(rRNA 或 DNA)进行稳定同位素探测(SIP)。我们发现,当硫酸盐不存在时,甲烷和纤铁矿存在的情况下,ANME-1 古菌会将 C-DIC 主动掺入到 RNA 中,但在没有甲烷添加的情况下,当添加纤维素时,它们会同化有机碳。Bathy-8 古菌在木质素被添加时会同化 C-DIC;然而,它们的 DNA 既来自无机碳源,也来自有机碳源,而不仅仅来自无机碳源。基于 SIP 结果,并得到宏基因组学的支持,这些古菌群中代谢的分解代谢和合成代谢分支之间可能存在碳转移,表明它们具有合成代谢的多功能性。
我们提供了 ANME-1 和 Bathy-8 古菌在环境中同化混合有机和无机碳的证据。视频摘要。