Suppr超能文献

通过脓毒症机器学习模型的多中心外部验证评估脓毒症监测的可推广性。

Evaluating sepsis watch generalizability through multisite external validation of a sepsis machine learning model.

作者信息

Valan Bruno, Prakash Anusha, Ratliff William, Gao Michael, Muthya Srikanth, Thomas Ajit, Eaton Jennifer L, Gardner Matt, Nichols Marshall, Revoir Mike, Tart Dustin, O'Brien Cara, Patel Manesh, Balu Suresh, Sendak Mark

机构信息

Duke Institute for Health Innovation, Durham, NC, USA.

Cohere Med Inc, 110 Corcoran St, 5th Floor, Durham, NC, USA.

出版信息

NPJ Digit Med. 2025 Jun 11;8(1):350. doi: 10.1038/s41746-025-01664-5.

Abstract

Sepsis accounts for a substantial portion of global deaths and healthcare costs. The objective of this reproducibility study is to validate Duke Health's Sepsis Watch ML model, in a new community healthcare setting and assess its performance and clinical utility in early sepsis detection at Summa Health's emergency departments. The study analyzed the model's ability to predict sepsis using a combination of static and dynamic patient data using 205,005 encounters between 2020 and 2021 from 101,584 unique patients. 54.7% (n = 112,223) patients were female and the average age was 50 (IQR [38,71]). The AUROC ranged from 0.906 to 0.960, and the AUPRC ranged from 0.177 to 0.252 across the four sites. Ultimately, the reproducibility of the Sepsis Watch model in a community health system setting confirmed its strong and robust performance and portability across different geographical and demographic contexts with little variation.

摘要

脓毒症占全球死亡人数和医疗费用的很大一部分。这项可重复性研究的目的是在一个新的社区医疗环境中验证杜克健康的脓毒症监测机器学习模型,并评估其在萨马健康急诊科早期脓毒症检测中的性能和临床效用。该研究使用2020年至2021年期间来自101,584名独特患者的205,005次就诊数据,分析了该模型结合静态和动态患者数据预测脓毒症的能力。54.7%(n = 112,223)的患者为女性,平均年龄为50岁(四分位距[38,71])。在四个地点,受试者工作特征曲线下面积(AUROC)范围为0.906至0.960,精确率-召回率曲线下面积(AUPRC)范围为0.177至0.252。最终,脓毒症监测模型在社区卫生系统环境中的可重复性证实了其强大且稳健的性能,以及在不同地理和人口背景下的可移植性,且变化很小。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4b8/12159134/b8fa3c4a64fd/41746_2025_1664_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验