Tang Weizhen, Dai Jie, Huang Zhousheng, Hao Boyang, Xie Weizheng
Civil Aviation Ombudsman Training College, Civil Aviation Flight University of China, Guanghan, China.
College of Air Traffic Management, Civil Aviation Flight University of China, Chengdu, China.
Front Neurorobot. 2025 Aug 22;19:1643919. doi: 10.3389/fnbot.2025.1643919. eCollection 2025.
To address the challenges of current 4D trajectory prediction-specifically, limited multi-factor feature extraction and excessive computational cost-this study develops a lightweight prediction framework tailored for real-time air-traffic management.
We propose a hybrid RCBAM-TCN-LSTM architecture enhanced with a teacher-student knowledge distillation mechanism. The Residual Convolutional Block Attention Module (RCBAM) serves as the teacher network to extract high-dimensional spatial features via residual structures and channel-spatial attention. The student network adopts a Temporal Convolutional Network-LSTM (TCN-LSTM) design, integrating dilated causal convolutions and two LSTM layers for efficient temporal modeling. Historical ADS-B trajectory data from Zhuhai Jinwan Airport are preprocessed using cubic spline interpolation and a uniform-step sliding window to ensure data alignment and temporal consistency. In the distillation process, soft labels from the teacher and hard labels from actual observations jointly guide student training.
In multi-step prediction experiments, the distilled RCBAM-TCN-LSTM model achieved average reductions of 40%-60% in MAE, RMSE, and MAPE compared with the original RCBAM and TCN-LSTM models, while improving by 4%-6%. The approach maintained high accuracy across different prediction horizons while reducing computational complexity.
The proposed method effectively balances high-precision modeling of spatiotemporal dependencies with lightweight deployment requirements, enabling real-time air-traffic monitoring and early warning on standard CPUs and embedded devices. This framework offers a scalable solution for enhancing the operational safety and efficiency of modern air-traffic control systems.
为应对当前4D轨迹预测面临的挑战——特别是多因素特征提取有限和计算成本过高的问题,本研究开发了一种专为实时空中交通管理量身定制的轻量级预测框架。
我们提出了一种采用师生知识蒸馏机制增强的混合RCBAM-TCN-LSTM架构。残差卷积块注意力模块(RCBAM)作为教师网络,通过残差结构和通道-空间注意力提取高维空间特征。学生网络采用时间卷积网络-LSTM(TCN-LSTM)设计,集成扩张因果卷积和两个LSTM层以进行高效的时间建模。来自珠海金湾机场的历史自动相关监视-广播(ADS-B)轨迹数据使用三次样条插值和均匀步长滑动窗口进行预处理,以确保数据对齐和时间一致性。在蒸馏过程中,教师网络的软标签和实际观测的硬标签共同指导学生网络的训练。
在多步预测实验中,经过蒸馏的RCBAM-TCN-LSTM模型与原始的RCBAM和TCN-LSTM模型相比,平均绝对误差(MAE)、均方根误差(RMSE)和平均绝对百分比误差(MAPE)降低了40%-60%,同时准确率提高了4%-6%。该方法在不同预测时域内保持了高精度,同时降低了计算复杂度。
所提出的方法有效地平衡了时空依赖性的高精度建模与轻量级部署要求,能够在标准CPU和嵌入式设备上实现实时空中交通监测和预警。该框架为提高现代空中交通管制系统的运行安全性和效率提供了一种可扩展的解决方案。