Li Wenbo, Qu Jiawei, Gao Julin, Yu Xiaofang, Ma Daling, Hu Shuping, Borjigin Qinggeer, Lu Kexin
College of Agriculture, Inner Mongolia Agricultural University, Hohhot, China.
Key Laboratory of Crop Cultivation and Genetic Improvement of Inner Mongolia Autonomous Region, Hohhot, China.
Front Plant Sci. 2025 Aug 21;16:1620311. doi: 10.3389/fpls.2025.1620311. eCollection 2025.
Straw return combined with rational nitrogen (N) fertilization plays a critical role in coordinating the transformation of soil organic carbon and nitrogen availability, thereby improving nitrogen use efficiency (NUE), crop yield, and soil fertility. However, the dynamics of soil carbon and nitrogen fractions under straw return with varying N inputs, and their specific contributions to NUE and yield, remain unclear.
A three-year split-plot field experiment was conducted in the Tumochuan Plain Irrigation District. The main plots included deep plowing with straw return (DPR) and no straw return (RT), while subplots comprised four N application rates (0, 210, 255, and 300 kg ha). Soil carbon and nitrogen fractions, maize yield, NUE, and partial factor productivity of nitrogen (PFPN) were assessed.
Compared to RT, DPR significantly improved soil nutrient levels and labile C and N fractions in the 0-40 cm soil layer. Maize yield, NUE, and PFPN increased by 17.28%, 18.24%, and 17.88%, respectively. Under DPR, a linear-plus-plateau model estimated the optimal N rate at 237.3 kg ha, reducing N input by 20.89% without compromising performance. Key contributors to NUE and PFPN included mineral nitrogen (MN), soil quality index (SQI), and dry matter accumulation (DMA), with relative contributions of 9.39%, 8.96%, and 8.49% to NUE, and 9.31%, 9.18%, and 8.99% to PFPN, respectively.
Straw return enhanced soil nitrogen availability and maize productivity by improving MN and SQI. Even with a 15-20% reduction in N application, DPR sustained high soil C and N fractions, yield, and NUE. These results offer practical guidance for optimizing N management under long-term straw return, with significant implications for sustainable maize production and soil fertility enhancement.
秸秆还田结合合理施氮在协调土壤有机碳转化和氮有效性方面起着关键作用,从而提高氮素利用效率(NUE)、作物产量和土壤肥力。然而,不同氮投入下秸秆还田时土壤碳氮组分的动态变化及其对氮素利用效率和产量的具体贡献仍不清楚。
在土默川平原灌区进行了为期三年的裂区田间试验。主区包括深耕秸秆还田(DPR)和不秸秆还田(RT),副区包括四个施氮量(0、210、255和300 kg/ha)。评估了土壤碳氮组分、玉米产量、氮素利用效率和氮肥偏生产力(PFPN)。
与RT相比,DPR显著提高了0-40 cm土层的土壤养分水平以及活性碳和氮组分。玉米产量、氮素利用效率和氮肥偏生产力分别提高了17.28%、18.24%和17.88%。在DPR条件下,线性加平台模型估计最佳施氮量为237.3 kg/ha,在不影响性能的情况下减少了20.89%的氮投入。氮素利用效率和氮肥偏生产力的关键贡献因素包括矿质氮(MN)、土壤质量指数(SQI)和干物质积累(DMA),对氮素利用效率的相对贡献分别为9.39%、8.96%和8.49%,对氮肥偏生产力的相对贡献分别为9.31%、9.18%和8.99%。
秸秆还田通过改善矿质氮和土壤质量指数提高了土壤氮有效性和玉米生产力。即使减少15-20%的施氮量,DPR仍能保持较高的土壤碳氮组分、产量和氮素利用效率。这些结果为长期秸秆还田下优化氮肥管理提供了实践指导,对玉米可持续生产和土壤肥力提升具有重要意义。