Suppr超能文献

利用2007年至2023年俄罗斯联邦的数据,在非洲猪瘟在野猪中传播的其他解释因素中测试易感种群密度

Testing a Susceptible Population Density Among Other Explanatory Factors of African Swine Fever Spread in Wild Boar Using the Russian Federation Data, 2007-2023.

作者信息

Zakharova O I, Liskova E A, Gladkova N A, Razheva I V, Iashin I V, Blokhin A A, Kolbasov D V, Korennoy F I

机构信息

Federal Research Center for Virology and Microbiology - Branch in Nizhny Novgorod, Nizhny Novgorod, Russia.

Federal Research Center for Virology and Microbiology, Volginsky, Russia.

出版信息

Transbound Emerg Dis. 2025 Aug 28;2025:6569042. doi: 10.1155/tbed/6569042. eCollection 2025.

Abstract

This study aims to identify the role of various natural, socioeconomic, and demographic factors in the development of the African swine fever (ASF) epizootic among wild boar in the Russian Federation (RF) from 2007 to 2023. In this study, particular emphasis was placed on testing the significance of wild boar population density as a key factor contributing to the spread of ASF within this population. During the study period, 1711 outbreaks in wild boars were reported in the RF, accounting for 41.7% of all ASF outbreaks in the country. We tested two regression approaches to model the dependance of the total number of ASF outbreaks in second-level municipal units (districts) on a range of potential explanatory factors, including the dynamically changing annual population density of wild boar. We employed negative binomial regression (NBR) and, as an alternative approach, classification and regression trees (CARTs). The predictive capabilities of both models were evaluated using 10-fold cross-validation. One of the most significant identified factors was the number of ASF outbreaks in domestic populations, which may indicate a close coexistence of both domestic and wild ASF cycles. Population density showed limited significance in the negative binomial model (=0.05). The CART model demonstrated high significance for this factor in the Far Eastern regions of the country, where the highest number of outbreaks occurred at density values above 0.120 individuals/km. For the European part of the RF, the threshold density value was 0.026 individuals/km, which closely corresponds to the threshold established by country's authorities for managing wild boar populations to prevent the spread of ASF. The results demonstrated a complex and nonlinear influence of wild boar population density and ASF outbreaks among domestic pigs on the likelihood of new infection foci emerging in the wild fauna. The modeling results indicated that although both types of models had comparable predictive capabilities, the CART approach provided better visualization and understanding of the analysis results. These findings can be used to optimize population management activities to regulate wild boar numbers in infection hotspots across different geographical areas delineated by the risk level of infection spread.

摘要

本研究旨在确定2007年至2023年期间,各种自然、社会经济和人口因素在俄罗斯联邦(RF)野猪非洲猪瘟(ASF)流行发展中的作用。在本研究中,特别强调检验野猪种群密度作为导致ASF在该种群中传播的关键因素的重要性。在研究期间,RF报告了1711起野猪疫情,占该国所有ASF疫情的41.7%。我们测试了两种回归方法,以模拟二级市政单位(区)中ASF疫情总数对一系列潜在解释因素的依赖性,包括动态变化的野猪年种群密度。我们采用了负二项回归(NBR),作为替代方法,还使用了分类和回归树(CART)。两种模型的预测能力均使用10折交叉验证进行评估。确定的最重要因素之一是家猪群体中的ASF疫情数量,这可能表明家猪和野猪的ASF循环密切共存。种群密度在负二项模型中的显著性有限(=0.05)。CART模型显示,在该国远东地区,这一因素具有高度显著性,在该地区,当密度值高于0.120只/km时,疫情数量最多。对于RF的欧洲部分,阈值密度值为0.026只/km,这与该国当局为管理野猪种群以防止ASF传播而设定的阈值密切对应。结果表明,野猪种群密度和家猪ASF疫情对野生动物新感染源出现的可能性具有复杂的非线性影响。建模结果表明,尽管两种模型具有可比的预测能力,但CART方法能更好地可视化和理解分析结果。这些发现可用于优化种群管理活动,以调控不同地理区域感染热点地区的野猪数量,这些区域根据感染传播风险水平划定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a069/12411050/88046ee70344/TBED2025-6569042.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验