Suppr超能文献

可计算指南的开发:用于可计算指南的GIN麦克马斯特指南开发清单扩展

Development of Computable Guidelines: GIN McMaster Guideline Development Checklist Extension for Computable Guidelines.

作者信息

Chehab Chirine, Lathrop Stacy, Harrod Christopher G, Kariuki James, Ritz Derek, Michaels Maria

机构信息

Centers for Disease Control and Prevention (CDC).

National Center for Biotechnology Information, National Library of Medicine (NLM), National Institutes of Health (NIH).

出版信息

Clin Public Health Guidel. 2025 Jul;2(3). doi: 10.1002/gin2.70023.

Abstract

BACKGROUND

Transforming Clinical Practice Guideline (CPG) recommendations into computer readable language is a complex and ongoing process that requires significant resources, including time, expertise, and funds. The objective is to provide an extension of the widely used GIN-McMaster Guideline Development Checklist (GDC) and Tool for the development of computable guidelines (CGs).

METHODS

Based on an outcome from the Human Centered Design (HCD) workshop hosted by the Guidelines International Network North America (GIN-NA), a team was formed to develop the checklist extension. The team included guideline developers, researchers, implementers, and informaticists who reviewed the GDC and developed a list of additional requirements to help guideline developers author clearer, more implementable narrative guideline recommendations (referred to as knowledge level 1, or L1 recommendations) and ensure conformance-testable attributes of the different artifacts of clinical guideline recommendations. The team vetted this list with guideline development organizations and health informatics experts to validate it, for clarity, usability, and effectiveness. The team used an iterative process to determine the final extension components for CG development guidance.

RESULTS

The team identified 9 components that complement the topics included in GDC for developing, implementing, and adopting CG recommendations.

CONCLUSION

This study demonstrates that the defined principles in the L1 Checklist, grounded in current guideline development standards, may significantly enhance the writing, development, and implementation of computable recommendations. Collaboration among guideline developers, implementers, and informaticists from the outset is crucial for achieving effective integration of these guidelines into clinical workflows. Future work should focus on assessing this extension within various ongoing learning initiatives and point-of-care digitization efforts, including the scholarly communications ecosystem and learning health systems, to further improve healthcare delivery.

摘要

背景

将临床实践指南(CPG)建议转化为计算机可读语言是一个复杂且持续的过程,需要大量资源,包括时间、专业知识和资金。目标是对广泛使用的GIN - 麦克马斯特指南制定清单(GDC)和可计算指南(CG)开发工具进行扩展。

方法

基于北美指南国际网络(GIN - NA)主办的以人为本设计(HCD)研讨会的成果,组建了一个团队来开发清单扩展内容。该团队包括指南开发者、研究人员、实施者和信息学家,他们审查了GDC,并制定了一份额外要求清单,以帮助指南开发者撰写更清晰、更具可实施性的叙述性指南建议(称为知识水平1或L1建议),并确保临床指南建议的不同工件具有可一致性测试的属性。该团队与指南制定组织和健康信息学专家对这份清单进行了审核,以验证其清晰度、可用性和有效性。该团队采用迭代过程来确定CG开发指南的最终扩展组件。

结果

该团队确定了9个组件,这些组件补充了GDC中包含的用于开发、实施和采用CG建议的主题。

结论

本研究表明,基于当前指南制定标准的L1清单中定义的原则,可能会显著增强可计算建议的撰写、开发和实施。指南开发者、实施者和信息学家从一开始就进行协作,对于将这些指南有效整合到临床工作流程中至关重要。未来的工作应侧重于在各种正在进行的学习计划和即时护理数字化工作中评估此扩展,包括学术交流生态系统和学习健康系统,以进一步改善医疗服务。

相似文献

本文引用的文献

9
FAIR Principles for Clinical Practice Guidelines in a Learning Health System.
Stud Health Technol Inform. 2019 Aug 21;264:1690-1691. doi: 10.3233/SHTI190599.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验