Güth Malte R, Reid Andrew, Zhang Yu, Huntgeburth Sonja C, Mill Ravi D, Dagher Alain, Kerns Kim, Holroyd Clay B, Petrides Michael, Cole Michael W, Baker Travis E
Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, United States.
Graduate Program in Neuroscience, Rutgers University, Newark, NJ, United States.
Imaging Neurosci (Camb). 2025 Sep 8;3. doi: 10.1162/IMAG.a.105. eCollection 2025.
Animal and computational work indicate that phase resetting of theta oscillations (4-12 Hz) in the parahippocampal gyrus (PHG) by salient events (e.g., reward, landmarks) facilitates the encoding of goal-oriented information during navigation. Although well studied in animals, this mechanism has not been empirically substantiated in humans. In the present article, we present data from two studies (Study 1: asynchronous electroencephalography (EEG)-magnetoencephalography (MEG) | Study 2: simultaneous EEG-fMRI) to investigate theta phase resetting and its relationship with PHG blood oxygenation level dependent (BOLD) activation in healthy adults (aged 18-34 years old) navigating a virtual T-maze to find rewards. In the first experiment, both EEG and MEG data revealed a burst of theta power over right-posterior scalp locations following feedback onset (termed right-posterior theta, RPT), and RPT power and measures of phase resetting were sensitive to the subject's spatial trajectory. In Experiment 2, we used probabilistic tractography data from the human connectome project to segment the anterior and posterior PHG based on differential connectivity profiles to other brain regions. This analysis resulted in a PHG subdivision consisting of four distinct anterior and two posterior PHG clusters. Next, a series of linear mixed effects models based on simultaneous EEG-fMRI data revealed that single-trial RPT peak power significantly predicted single-trial hemodynamic responses in two clusters within the posterior PHG and one in the anterior PHG. This coupling between RPT power and PHG BOLD was exclusive to trials performed during maze navigation, and not during a similar task devoid of the spatial context of the maze. These findings highlight a role of PHG theta phase resetting for the purpose of encoding salient information during goal-directed spatial navigation. Taken together, RPT during virtual navigation integrates experimental, computational, and theoretical research of PHG function in animals with human cognitive electrophysiology studies and clinical research on memory-related disorders such as Alzheimer's disease.
动物实验和计算研究表明,海马旁回(PHG)中由显著事件(如奖励、地标)引起的θ振荡(4-12赫兹)的相位重置,有助于在导航过程中对目标导向信息进行编码。尽管在动物身上已经进行了充分研究,但这一机制在人类中尚未得到实证证实。在本文中,我们展示了两项研究的数据(研究1:异步脑电图(EEG)-脑磁图(MEG)|研究2:同步EEG-功能磁共振成像(fMRI)),以调查健康成年人(年龄在18-34岁之间)在虚拟T型迷宫中寻找奖励时的θ相位重置及其与PHG血氧水平依赖(BOLD)激活的关系。在第一个实验中,EEG和MEG数据均显示,反馈开始后右后头皮位置出现θ功率爆发(称为右后θ,RPT),并且RPT功率和相位重置测量对受试者的空间轨迹敏感。在实验2中,我们使用了人类连接组计划的概率纤维束成像数据,根据与其他脑区的不同连接模式,将PHG分为前部和后部。该分析产生了一个由四个不同的前部和两个后部PHG簇组成的PHG细分。接下来,基于同步EEG-fMRI数据的一系列线性混合效应模型显示,单次试验的RPT峰值功率显著预测了后部PHG中的两个簇和前部PHG中的一个簇的单次试验血流动力学反应。RPT功率与PHG BOLD之间的这种耦合仅在迷宫导航期间进行的试验中存在,而在没有迷宫空间背景的类似任务中则不存在。这些发现突出了PHG θ相位重置在目标导向空间导航过程中编码显著信息的作用。总之,虚拟导航期间的RPT将动物中PHG功能的实验、计算和理论研究与人类认知电生理学研究以及与记忆相关疾病(如阿尔茨海默病)的临床研究结合在一起。