McDannald Austin, Siderius Daniel W, DeCost Brian, Choudhary Kamal, Ortiz-Montalvo Diana L
Materials Measurement Science Division, National Institute of Standards and Technology Gaithersburg MD USA
Chemical Sciences Division, National Institute of Standards and Technology Gaithersburg MD USA.
Chem Sci. 2025 Sep 10. doi: 10.1039/d5sc06099k.
How can you tell if a sorbent material will be good for any gas separation process - without having to do detailed simulations of the full process? We present new metrics to evaluate solid sorbent materials for Direct Air Capture (DAC), a particularly challenging gas separation problem, based entirely on intrinsic properties of the sorbent material. These new metrics provide a theoretical upper bound on CO captured per energy as well as a theoretical upper limit on the purity of the captured CO. These metrics apply to any adsorption-refresh cycle design. The only inputs are the path adsorption-refresh cycle in terms of thermodynamic variables and the intrinsic materials properties (primarily the equilibrium uptake, and heat capacity) along that path. In this work we demonstrate the use of these metrics with the example of temperature-pressure swing refresh cycles. To apply these metrics on a set of examples, we first generated approximations of the necessary materials properties for 11 660 metal-organic framework materials (MOFs). We find that the performance of the sorbents is highly dependent on the path through thermodynamic parameter space. These metrics allow for: (1) finding the optimum materials given a particular refresh cycle, and (2) finding the optimum refresh cycles given a particular sorbent. Applying these metrics to the database of MOFs lead to the following insights: (1) start cold - the equilibrium uptake of CO diverges from that of N at lower temperatures, and (2) selectivity of CO other gases at any one point in the cycle does not matter - what matters is the relative change in uptake along the cycle.
在无需对整个过程进行详细模拟的情况下,如何判断一种吸附剂材料是否适用于任何气体分离过程呢?我们提出了新的指标,用于评估直接空气捕获(DAC)中的固体吸附剂材料,这是一个极具挑战性的气体分离问题,这些指标完全基于吸附剂材料的固有特性。这些新指标给出了每单位能量捕获二氧化碳的理论上限以及捕获二氧化碳纯度的理论上限。这些指标适用于任何吸附 - 再生循环设计。唯一的输入是根据热力学变量确定的吸附 - 再生循环路径以及沿该路径的材料固有特性(主要是平衡吸附量和热容量)。在这项工作中,我们以温度 - 压力摆动再生循环为例展示了这些指标的应用。为了将这些指标应用于一组示例,我们首先生成了11660种金属有机框架材料(MOF)所需材料特性的近似值。我们发现吸附剂的性能高度依赖于通过热力学参数空间的路径。这些指标能够:(1)在给定特定再生循环的情况下找到最佳材料,以及(2)在给定特定吸附剂的情况下找到最佳再生循环。将这些指标应用于MOF数据库可得出以下见解:(1)从低温开始——二氧化碳的平衡吸附量在较低温度下与氮气的平衡吸附量不同,以及(2)在循环中的任何一点,二氧化碳对其他气体的选择性并不重要——重要的是沿循环吸附量的相对变化。